CS2311 - OBJECT ORIENTED PROGRAMMING (Part – B Questions and Answers)

UNIT – 1

1.What are the Features of oop’s & how are they implemented in C++?(Nov/Dec 2010) (April/May 2011) (Nov/Dec 2011)

· Objects : Objects are the basic run time entities in an object oriented system. They are instance of a class. They may represent a person, a place etc that a program has to handle. They may also represent user-defined data. They contain both data and code.

· Classes : Class is a collection of objects of similar data types. Class is a user-defined data type. The entire set of data and code of an object can be made a user defined type through a class.

· Data Abstraction : Abstraction refers to the act of representing the essential features without including the background details or explanations.

· Encapsulation The wrapping up of data and functions into a single unit is known as data encapsulation. Here the data is not accessible to the outside world. The insulation of data from direct access by the program is called data hiding or information hiding.

· Inheritance : Inheritance is the process by which objects of one class acquire the properties of objects of another class. It supports the concept of hierarchical classification and provides the idea of reusability. The class which is inherited is known as the base or super class and class which is newly derived is known as the derived or sub class.
· Polymorphism : Polymorphism is an important concept of OOPs. Polymorphism means one name, multiple forms. It is the ability of a function or operator to take more than one form at different instances.

· Dynamic Binding : Binding refers to the linking of procedure call to the code to be executed in response to the call. Dynamic Binding or Late Binding means that the code associated with a given procedure call is known only at the run-time.

· Message Passing : Objects communicate between each other by sending and receiving information known as messages. A message to an object is a request for execution of a procedure. Message passing involves specifying the name of the object, the name of the function and the information to be sent.

2. Explain about inline function? (Nov/Dec 2011)

An inline function is a function that is expanded in line when it is invoked. The compiler

Replaces the function call with corresponding function code. The inline funcitions are defined

As follows:

 inline function-header

 {

 Function body;

 }

Example:

inline double cube(double a)

 {

 Return(a*a*a);

 }

Some situations where inline expansion may not work are:

· For functions returning values, if a loop , a switch, or a goto exists.

· For functions not returning values, if a return statement exists.

· If functions contain static variables.

· If inline functions are recursive.

-Example program to illustrate inline functions :

#include <iostream.h>

inline float mul(float x, float y)

 {
return(x*y);
}

inline double div(double p, double q)

 { return(p/q) ; }

int main()

{

 float a=1.2 ;

 float b=2.3;

 cout<< mul(a,b)<<”\n”;

 cout<< div(a,b)<<”\n”;

 return 0;

}

3. Explain Function Overloading?

A single function name can be used to perform different types of tasks. The same function name can be used to handle different number and different types of arguments. This is known as function overloading or function polymorphism.

#include<iostream.h>

#include<conio.h>

void swap(int &x,int &y)

{

int t;

t=x;

x=y;

y=t;

}

void swap(float &p,float &q)

{

float t;

t=p;

p=q;

q=t;

}

void swap(char &c1,char &c2)

{

char t;

t=c1;

c1=c2;

c2=t;

}

void main()

{

int i,j;

float a,b;

char s1,s2;

clrscr();

cout<<"\n Enter two integers : \n";

cout<<" i = ";

cin>>i;

cout<<"\n j = ";

cin>>j;

swap(i,j);

cout<<"\n Enter two float numbers : \n";

cout<<" a = ";

cin>>a;

cout<<"\n b = ";

cin>>b;

swap(a,b);

cout<<"\n Enter two Characters : \n";

cout<<" s1 = ";

cin>>s1;

cout<<"\n s2 = ";

cin>>s2;

swap(s1,s2);

cout<<"\n After Swapping \n";

cout<<" \n Integers i = "<<i<<"\t j = "<<j;

cout<<" \n Float Numbers a= "<<a<<"\t b = "<<b;

cout<<" \n Characters s1 = "<<s1<<"\t s2 = "<<s2;

getch();

}

4. Explain the various types of operators in C++

 i):: Scope resolution operator:

 A variable declared in an inner block cannot be accessed outside the block. To resolve this problem the scope resolution operator is used. It can be used to uncover a hidden variable. This operator allows access to the global version of the variable. It takes the form, :: variable-name

ii) ::* Pointer to member declarator : To declare a pointer to the member of the class

 iii) ->* Pointer to member operator : To access a member using object name and a pointer to that member

 iv) .* Pointer to member operator : To access a member using a pointer to the object and a pointer to that member

v) delete Memory release operator : When a data object is no longer needed it is destroyed to release the memory space for reuse.

vi) new Memory allocation operator : The new operator can be used to create objects of any data-type. It allocates sufficient memory to hold a data object of type data-type and returns the address of the object.

vii) endl Line feed operator : causes a linefeed to be inserted

viii) setw Field width operator
: provides a common field width for all the numbers and forces them to be printed right justified.

5. Explain constructor and its types. (Nov/Dec 2011)

A constructor is a special member function whose task is to initialize the objects of its class. It has the same name as the class. It gets invoked whenever an object is created to that class. It is called so since it constructs the values of data members of the class.

Special characteristics of constructor.

• Constructors should be declared in the public section.

• They are invoked automatically when the objects are created.

• They do not have return types

• They cannot be inherited.
There are four types of constructors. They are

• Default constructors – A constructor that accepts no parameters

• Parameterized constructors – The constructors that can take arguments

• Copy constructor – It takes a reference to an object of the same class as itself as an argument

• Dynamic constructors – Used to allocate memory while creating objects

The constructor can be called by two ways. They are,

• By calling the constructor explicitly e.g., integer int1 = integer (0, 100);

• By calling the constructor implicitly e.g., integer int1 (0, 100);

The usage of all the constructors in a program like parameterized constructor, copy constructor and constructor with default arguments are used in the same program- overloaded constructor.

-Program to illustrate an overloaded constructor.

#include<iostream.h>

class code

{

int id;

public:

code()

{

}

code(int a)

{

id=a;

}

code(code &x)

{

id=x.id;

}

void display(void)

{

cout<<id;

}

};

int main()

{

code A(100);

code B(A);

code C=A;

cout<<"\n id of A: ";A.display();

cout<<"\n id of B: ";B.display();

cout<<"\n id of C: ";C.display();

return 0;

 }

6. Explain in detail about classes and objects with example.
A class is a way to bind the data and its function together. It allows the data to be hidden from external use.

- Speifying a class

 The general form of a class is,

class class_name

{

private:

variable declarations;

function declaration;

public:

variable declarations;

function declaration;

};

- Simple class example- Representation of a class

- Creating objects class- name object-name;

 – Accessing class members object-name.function-name (actual parameters);

- Defining member functions both inside and outside the class.

 Return-type class-name :: function-name (argument declaration)

 {

 Function body;

 }

Program to illustrate array of object

#include<iostream.h>

class employee

{

char name[30];

float age;

public:

void getdata(void);

void putdata(void);

};

void employee::getdata(void)

{

cout<<”enter name:”;

cin>>name;

cout<<”enter age”;

cin>>age;

}

void employee::putdata(void)

{

 cout<<”name:”<<name<<”\n”<<”age:”<<age<<”\n”;

}

const int size=3;

int main()

{

 employee mangaer[size];

for(int i=0; i<size; i++)

{

 cout<<”\n details of manager”<<i+1<<”\n”;

manager[i].getdata();

}

for(i=0;i<size;i++)

{

 cout<<”\n manager”<<i+1<<”\n”;

 manager[i].putdata();

}

retrun 0;

}

UNIT -2
1. Define operator overloading. Write the rules for operator overloading. Write a C++ program for assignment operator overloading.

Operator overloading provides a flexible option for the creation of new definitionsfor most of the c++ operators.

Rules :

• Only existing operators can be overloaded.

• We cannot change the basic meaning of an operator.

• The overloaded operator must have at least one operand.

• Overloaded operators follow the syntax rules of the original operators.

• There are some operators that can not be overloaded (sizeof , . , .*, :: and ?:)

• We cannot use friend function to overload certain operators(=, (), [], ->)

#include<iostream.h>

#include<conio.h>

class assignment

{

private:

int x;

public:

assignment()

{

}

assignment(int y)

{

x=y;

}

assignment operator =(assignment as)

{

x=as.x;

return(x);

}

void print()

{

cout<<"x = "<<x;

}

};

void main()

{

clrscr();

assignment a(100);

assignment b;

b=a;

b.print();

getch();

}

2. Explain inheritance? (Nov/Dec 2010) (Nov/Dec 2011)

Inheritance is the process by which objects of one class acquire the properties of objects of another class. It supports the concept of hierarchical classification and provides the idea of reusability. The class which is inherited is known as the base or super class and class which is newly derived is known as the derived or sub class.

The syntax of deriving a new class from an already existing class is given by,

class derived-class : visibility-mode base-class

{

body of derived class

}

The various types of inheritance are,

• Single inheritance : In single inheritance, one class is derived from an already existing base class.

• Multi-level inheritance : In multi-level inheritance, a new class is derived from a class already derived from the base class.

• Multiple inheritance : In multiple inheritance, a single class is derived from more than one base

class.

• Hierarchical inheritance : In hierarchical inheritance, more than one class is derived from a single base class.

• Hybrid inheritance : Hybrid inheritance is defined as a combination of more than one inheritance.

Example :

MULTIPLE INHERITANCE

#include<iostream.h>

#include<conio.h>

class add

{

protected:

int val;

public:

void sum(int a,int b)

{

val=a+b;

}

};

class sub

{

protected:

int res;

public:

void minus(int a,int b)

{

res=a-b;

}

};

class mul:public add,public sub

{

private:

int prod;

public:

void display()

{

cout<<"\n OUTPUT";

cout<<"\n~~~~~~~~";

cout<<"\n\n Added Value = "<<val;

cout<<"\n\n Subtracted Value = "<<res;

prod=val*res;

cout<<"\n\n Product = "<<prod;

}

};

void main()

{

clrscr();

int x,y;

mul s;

cout<<"\n Enter 2 numbers : \n";

cin>>x>>y;

s.sum(x,y);

s.minus(x,y);

s.display();

getch();

}

3. Explain about Type conversions?

There are three types of conversions. They are

• Conversion from basic type to class type – done using constructor

• Conversion from class type to basic type – done using a casting operator

• Conversion from one class type to another – done using constructor or casting operator

//TYPE CONVERSION FROM ONE OBJECT TO ANOTHER OBJECT

#include<iostream.h>

#include<conio.h>

class sample

{

private:

int val;

public:

sample(int a,int b,int c)

{

if((a>b)&&(a>c))

val=a;

else if(b>c)

val=b;

else

val=c;

}

int send()

{

return val;

}

};

class sample1

{

private:

int y;

public:

sample1()

{

}

sample1(sample s1)

{

y=s1.send();

}

void print()

{

cout<<"\n Greatest number is : "<<y;

}

};

void main()

{

int a,b,c;

clrscr();

cout<<"\n Enter three numbers \n";

cin>>a>>b>>c;

sample s1(a,b,c);

sample1 s2;

s2=s1;

s2.print();

getch();

}

4. Explain Friend function in detail with example.

An outside function can be made a friend to a class using the qualifier ‘friend’. The function declaration should be preceded by the keyword friend. A friend function has full access rights to the private members of a class.

characteristics of a friend function.

• It is not in the scope of a class in which it is declared as friend.

• It cannot be called using the object of that class.

• It can be invoked without an object.

• It cannot access the member names directly and uses the dot operator.

• It can be declared as either public or private.

• It has the objects as arguments.

#include<iostream.h>

#include<conio.h>

class complex

{

private:

float real;

float img;

public:

complex()

{

real=0.0;

img=0.0;

}

complex(float a,float b)

{

real=a;

img=b;

}

friend complex operator +(complex,complex);

void display()

{

cout<<"\n"<<real<<"+-i"<<img<<"\n";

}

};

complex operator +(complex c1,complex c2)

{

complex t;

t.real=c1.real+c2.real;

t.img=c1.img+c2.img;

return(t);

}

void main()

{

clrscr();

complex c1(5.5,2.5);

complex c2(1.5,5.5);

complex c3;

c3=c1+c2;

c1.display();

c2.display();

c3.display();

getch();

}

5. Explain run time polymorphism.
The two types of polymorphism are,

• Compile time polymorphism – The compiler selects the appropriate function for a particular call at the compile time itself. It can be achieved by function overloading and operator overloading.

• Run time Polymorphism - The compiler selects the appropriate function for a particular call at the run time only. It can be achieved using virtual functions
Program to implement runtime polymorphism:

#include<iostream.h>

#include<conio.h>

class squareint

{

public:

int s;

squareint()

{

}

squareint(int a)

{

s=a*a;

}

virtual void display()

{

cout<<"\nSquare of an integer = "<<s;

}

};

class squareflt:public squareint

{

public:

float s1;

squareflt(int a,float b):squareint(a)

{

s1=b*b;

}

void display()

{

cout<<"\n Square of a float number ="<<s1;

}

};

void main()

{

int x;

float y;

clrscr();

cout<<"\n Enter an Integer : ";

cin>>x;

cout<<"\n Enter a float : ";

cin>>y;

squareflt obj(x,y);

squareint obj1;

squareint *p;

obj1=obj;

p=&obj1;

p->display();

p=&obj;

p->display();

getch();

}

6. Explain Template with its types.

Templates are generic programming concept. It doesn’t depend on any data type. It is generic in nature, it is of two type 1. Function template 2. Class template

 i) Function Template

A function template specifies how an individual function can be constructed. The limitation of such functions is that they operate only on a particular data type. It can be overcome by defining that function as a function template or generic function.

template<class T,…>

returnType FuncName(arguments)

{

…..//body of the function template

…..

}

ii)Class Template

Classes can also be declared to operate on different data types. Such classes are called class templates. A class template specifies how individual classes can be constructed similar to normal class specification

template <class T1,class T2,…>

class classname

{

T1 data1;

….

//functions of template arguments T1,T2,….

void func1(T1 a,T2 &b);

…

T func2(T2 *x,T2 *y);

};

/*Templates to swap*/

#include<iostream.h>

#include<string.h>

#include<conio.h>

template <class T>

void swap(T& x,T& y)

{

 T temp;

 temp=x;

 x=y;

 y=temp;

}

int main()

{

 int a=44 ;

 int b=66 ;

 float s=4.4;

 float t=6.6;

 char* mr="cse";

 char* ms="Software";

 cout<<"Before swap a: "<<a<<" b: "<<b<<endl;

 swap(a,b);

 cout<<"After swap a: "<<a<<" b: "<<b<<endl;

 cout<<"Before swap s: "<<s<<" t: "<<t<<endl;

 swap(s, t);

 cout<<"After swap s: "<<s<<" t: "<<t<<endl;

 cout<<"Before swap : "<<mr<<" : "<<ms<<endl;

 swap(mr,ms);

 cout<<"After swap : "<<mr<<" : "<<ms<<endl;

 getch();

}

UNIT -3

1.Explain Exception Handling in C++ with examples.

 Exceptions are run time anomalies. They include conditions like division by zero or access to an array outside to its bound etc.

 Types: Synchronous exception and Asynchronous exception.

 Steps:

· Find the problem (Hit the exception)

· Inform that an error has occurred. (Throw exception)

· Receive error information (Catch exception)

· Take corrective action (Handle exception)

C++ exception handling mechanism is basically built upon three keywords, namely, try , throw and catch. The keyword try is used to preface a block of statements which may generate exceptions. This block of statements is known as try block. When an exception is detected it is thrown using a throw statement in the try block. A catch block defined by the keyword catch catches the exception thrown by the throw statement in the try block and handles it appropriately.

[image: image1]
· try block throwing an exception

· invoking function that generates exception

· throwing mechanism

· catching mechanism

· multiple catch statements

· catch all exceptions

· Rethrowing an exception

General form

 try

 {

 …..

 throw exception;

 …….

 }

 Catch (type arg)

 {

 ……

 }

 Exceptions that has to be caught when functions are used- The form is as follows:

 Type function (arg list)

 {

 ……

 Throw (object)

 …..

 }

 try

 {

 …..

 Invoke function here;

 …….

 }

 Catch (type arg)

 {

 Handles exception here

 }

 Multiple catch statements:

 try

 {

 …..

 throw exception;

 …….

 }

 Catch (type arg)

 {

 ……// catch block1

 }

 Catch (type arg)

 {

 ……//catch block2

 }

 Catch (type arg)

 {

 ……//catch block n

 }

 Generic exception handling is done using ellipse as follows:

 Catch (. . .)

 {

 ……

 }

2. Explain STL in detail with example programs.

The collection of generic classes and functions is called the Standard Template Library (STL). STL components which are now part of the standard C++ library are defined in the namespace std. We must therefore use the using namespace directive

using namespace std;

· Components of STL

· Containers

 types of container are;

sequence container

· Vector - it allows insertion and deletion at back – it permits direct access- header file is < vector >

· Deque - double ended queue – it allows insertion and deletion at both ends- permits direct access- header file is < deque>
· List - allows insertion and deletion anywhere – header file is < list >
Associative container

· Set - used for storing unique set – it allows rapid look up- bidirectional access - header file is < set >

· Multiset - Used for storing non unique set – header file is < set >
· Map - Used for storing unique key/value – header file is <map>
· Multimap

Derived container

· Stack - Last in first out – no iterator- header file is < stack >
· Queue - First in first out – no iterator- header file is < queue>
· priority queue - first element out is always with the highest priority- header file is <queue>- no iterator
· Algorithms

· Iterators

· Application of Container Classes

3.Explain File Handling in C++.(Nov/Dec 2010) (April/May 2011)

Files are required to save our data for future use, as Ram is not able to hold our data permanently.

[image: image2]
The Language like C/C++ treat every thing as a file , these languages treat keyboard , mouse, printer, Hard disk , Floppy disk and all other hardware as a file.

The Basic operation on text/binary files are : Reading/writing ,reading and manipulation of data stored on these files. Both types of files needs to be open and close.

How to open File

	Using member function Open()
	Using Constructor

	Syntax

 Filestream object;

 Object.open(“filename”,mode);

Example

 ifstream fin;

 fin.open(“abc.txt”)

	Syntax

Filestream object(“filename”,mode);

Example

ifstream fin(“abc.txt”);

· Mode are optional and given at the end .

· Filename must follow the convention of 8.3 and it’s extension can be anyone

How to close file

All types of files can be closed using close() member function

Syntax

fileobject.close();

Example

fin.close(); // here fin is an object of istream class

Program

#include<fstream>

using namespace std;

int main()

{

 ofstream fout;

 fout.open("abc.txt");

 fout<<"This is my first program in file handling";

 fout<<"\n Hello again";

 fout.close();

 return 0;

}

ABC.txt file contents

This is my first program in file handling

 Hello again

Detecting END OF FILE

Syntax

 Filestream_object.eof();

Example

#include<iostream>

#include<fstream>

#include<conio.h>

using namespace std;

int main()

{

 char ch;

 ifstream fin;

 fin.open("abc.txt");

 while(!fin.eof()) // using eof() function

 {

 fin.get(ch);

 cout<<ch;

 }

 fin.close();

 getch();

 return 0;
}

4. Explain in detail about Namespaces.

Namespaces allow to group entities like classes, objects and functions under a name. This way the global scope can be divided in "sub-scopes", each one with its own name. The format of namespaces is:
namespace identifier
{
entities
}
Where identifier is any valid identifier and entities is the set of classes, objects and functions that are included within the namespace. For example:

	
	namespace myNamespace

{

 int a, b;

}

Eg:

namespace net_connect

{

 int make_connection();

 int test_connection();

 //so forth...

}
Accessing functions of anmespace :

we've had to refer to the functions within the namespace by including the namespace identifier followed by the scope operator.

Eg:

net_connect::make_connection()

Another convenience of namespaces is that they allow you to use the same function name, when it makes sense to do so, to perform multiple different actions.

Introducing an entire namespace into a section of code by using a using-directive with the syntax:

using namespace namespace_name;

Eg :

using namespace std;

to use an unnamed namespace to avoid naming conflicts.

namespace

{

 //functions

}

Defining variables inside a namespace
Eg 1:
#include<iostream>

using namespace std;

namespace mylib // defining mylib namespace

{

int a;

int b;

}

void main()

{

using mylib::a; // using declaration

using mylib::b; // using declaration

cin>>a>>b;

cout<<a<<b;

}

Eg 2:
#include<iostream>

using namespace std;

namespace mylib

{

int a;

int b;

}

using namespace mylib;

void main()

{

cin>>a>>b;

cout<<a<<b;

}
5. Explain the different types of streams and various formatted I/O in C++..(Apr/May 2012)(Nov 2013)

The header files used for formatted I/O in C++ are:

Header file

Brief description

iostream.h - Provide basic information required for all stream I/O operation such as cin, cout, cerr and clog correspond to standard input stream, standard output stream, and standard unbuffered and buffered error streams respectively.

iomanip.h - Contains information useful for performing formatted I/O with parameterized stream manipulation.

fstream.h - Contains information for user controlled file processing operations.

strstream.h - Contains information for performing in-memory formatting or in-core formatting. This resembles file processing, but the I/O operation is performed to and from character arrays rather than files.

stdiostrem.h - Contains information for program that mixes the C and C++ styles of I/O.

The compilers that fully comply with the C++ standard that use the template based header files won’t need the .h extension.The iostream class hierarchy is shown below. From the base class ios, we have a derived class:

Class

Brief description

Istream - Class for stream input operation.

Ostream - Class for stream output operation.

 ios derived classes - So, iostream support both stream input and output.

6. Explain Manipulators.

Manipulators are the functions to manipulate the output formats.Manipulators are operators that are used to format the data display. The most commonly used manipulators are endl and setw.

The major difference in the way the manipulators are implemented as comp[ared to the ios member functions. The ios member functions return the previous format state which can be used latter if necessary. But the manipulator does not return the previous state.

-endl manipulator causes linefeed to be inserted- Has the same effect as using newline character

“\n”

Eg:

 cout<<”m=” <<m<<endl<<”n=”<<n<<endl;

· If a common field width for all numbers is needed then Setw() manipulator is required.

Eg:

 cout<<setw(5)<<sum<<endl;

 Setw(5) specifies a field width 5 printing the value of the variable sum. This value is right-

Justified.

 Program to illustrate use of manipulators

#include <iostream.h>

#include<iomanip.h>

int main()

{

 int basic=900, allowance= 95, Total=1045;

 cout<<setw(10)<<”basic”<<setw(10)<<basic<<endl<<setw(10)<<”allowance”<<setw(10)<<

 allowance<<endl<<setw(10)<<”Total”<<setw(10)<<Total<<endl;

 return 0;

 }
 Output:

 Basic 900

 Allowance 95

 Total 1045

Unit -4

1. Explain the features of Java?

The various java features are,

• Compiled and interpreted

• Platform independent and portable

• Object oriented

• Robust and secure

• Distributed

• Familiar, small and simple

• Multithreaded and interactive

• High performance, Dynamic and extensible

2. Describe the structure of Java program? (Nov/Dec 2011)

 The fundamental structure of any Java programme should look like:

[package declarations]

[import statements]

[class declaration]

An example is given below:

package abc;

import java.lang;

class Demo {

public static void main(String[] args) {

Sytem.out.println("Hello! World");

}

}

/*

This is a sample java program

Save this file as Welcome.java

*/

class Welcome

{

// A java program will start from here.

public static void main(String args[])

{

System.out.println(" Welcome to Java-Sample!!! ");

}

}

3. How two dimensional arrays are handled in Java? Explain it with an example. (Nov/Dec 2011)

Two-dimensional arrays are defined as "an array of arrays". Since an array type is a first-class Java type, we can have an array of ints, an array of Strings, or an array of Objects. For example, an array of ints will have the type int[]. Similarly we can have int[][], which represents an "array of arrays of ints". Such an array is said to be a two-dimensional array.
The command

int[][] A = new int[3][4];

declares a variable, A, of type int[][], and it initializes that variable to refer to a newly created object. That object is an array of arrays of ints. Here, the notation int[3][4] indicates that there are 3 arrays of ints in the array A, and that there are 4 ints in each of those arrays.
To process a two-dimensional array, we use nested for loops. We already know about for loop. A loop in a loop is called a Nested loop. That means we can run another loop in a loop.

Notice in the following example how the rows are handled as separate objects.

Code: Java

int[][] a2 = new int[10][5];

 // print array in rectangular form

 for (int i=0; i<a2.length; i++) {

 for (int j=0; j<a2[i].length; j++) {

 System.out.print(" " + a2[i][j]);

 }

 System.out.println("");

 }

In this example, "int[][] a2 = new int[10][5];" notation shows a two-dimensional array. It declares a variable a2 of type int[][],and it initializes that variable to refer to a newly created object. The notation int[10][5] indicates that there are 10 arrays of ints in the array a2, and that there are 5 ints in each of those arrays.

Here is the complete code of the example:

public class twoDimension{
public static void main(String[] args) {
int[][] a2 = new int[10][5];
for (int i=0; i<a2.length; i++) {
for (int j=0; j<a2[i].length; j++) {
a2[i][j] = i;
System.out.print(" " + a2[i][j]);
}
System.out.println("");
}
}
}

4. Explain Strings and stringbuffer class in Java with examples.

String manipulation is the most common part of many Java programs. Strings represent a sequence of characters. The easiest way to represent a sequence in Java is by using a character array.

In Java, strings are class objects and implemented using two classes, namely, String and StringBuffer. A Java string is an instantiated object of the String class. A Java string is not a character array and is not NULL terminated. Strings may be declared and created as follows,

String stringname;

Stringname = new String(“string”);

Some most commonly used string methods are,

· s1.equals(s2)

· s1.length()

· s1.charAt(n)

· s1.compareTo(s2)

· s1.concat(s2)

· s1.substring(n,m)

· s1.indexOf(‘x’)

StringBuffer class

StringBuffer is a peer class of String.While String creates strings of fixed-length, StringBuffer creates strings of flexible length that can be modified in terms of both length and content. We can insert characters and substrings in the middle of a string, or append another string to the end.

Some most commonly used stringbuffer methods are,

· s1.setCharAt(n,’x’)

· s1.append(s2)

· s1.insert(n,s2)

· s1.setLength(n)

5. Explain Packages in detail.

The steps involved in creating our own package are,

• Declare the package at the beginning of the file.

• Define the class and declare it as public.

• Create a sub directory.

• Store the listing

• Compile the file

To import package- it is done as follows:

import packagename.classname;

Or

import packagename.*;

Naming conventions:

double y= java.lang.math.sqrt(x);

Math- class name

Sqrt- method name

Example for importing classes :

import package1.classA;

import package2.*;

class packagetest2

{

 public static void main(String args[])

{

 classA objectA=new classA();

classA objectB=new classB();

objectA.displayA();

objectB.displayB();

}

}

Hiding Classes:

When we import a package using * all public classes are imported. However, we may prefer to not import certain classes. That is, we may like to hide these classes from accessing from outside of the package. Such classes should be declared as “not public”.

Example:

package p1;

public class X

//public class, available outside

{

 // body of X

}

Class Y

// not public, hidden

{

 // body of Y

}

Program :
package p1;

public class Floatpoint1

{

public void displayA()

{

float a=20.5F,b=6.4F;

System.out.println("a="+a);

System.out.println("b="+b);

System.out.println("a+b="+(a+b));

System.out.println("a-b="+(a-b));

System.out.println("a*b="+(a*b));

System.out.println("a/b="+(a/b));

System.out.println("a%b="+(a%b));

}

}

package P2;

public class Relationaloperators

{

public void displayB()

{

float a=15.0F,b=20.75F,c=15.0F;

System.out.println("a="+a);

System.out.println("b="+b);

System.out.println("c="+c);

System.out.println("a<b is"+(a<b));

System.out.println("a>b is"+(a>b));

System.out.println("a==c is"+(a==c));

System.out.println("a<=c is"+(a<=c));

System.out.println("a>=b is"+(a>=b));

System.out.println("b!=c is"+(b!=c));

System.out.println("b==a+c is"+(b==a+c));

}

}

import java.io.*;

import P1.*;

import P2.*;

class Operators

{

public static voidmain(String args[])

{

Floatpoint1 a1=new Floatpoint1();

a1.displayA();

Relationaloperators b1=new Relationaloperators();

b1.displayB();

}

}

6. Explain the following bytecode & virtual machine

Java compiler produces an intermediate code known as bytecode for a machine. This machine is called the Java virtual machine and it exists only inside the computer memory. It is a simulated computer within the computer and does all major functions of a real computer.

The virtual machine code is not machine specific. The machine specific code is generated by the java interpreter by acting as an intermediary between the virtual machine and the real machine.

The java object framework (java API) acts as the intermediary between the user programs and the virtual machine which in turn acts as the intermediary between the operating system and the java object frame work.

--

UNIT -5
1.Explain about Inheritance in Java? (April/May 2011)

The mechanism of deriving a new class from an already existing class is known as inheritance. Its types are,

· Single inheritance : : In single inheritance, one class is derived from an already existing base class.

· Multi-level inheritance : : In multi-level inheritance, a new class is derived from a class already derived from the base class.

· Hierarchical inheritance : : In hierarchical inheritance, more than one class is derived from a single base class.

· Hybrid inheritance: Hybrid inheritance is defined as a combination of more than one inheritance.

2.How will you implement multiple inheritance in Java? Explain in detail.

Classes in Java cannot have more than one superclass.

Class A extends B extends C

{

…………..

}

Is not permitted in Java. Java provides an alternate approach known as interfaces to support the concept of multiple inheritance. It can implement more than one interface, thereby enabling us to create that build upon other classes without the problems created by multiple inheritance.

Interface

An interface is basically a kind of class. Like classes, interfaces contain methods and variables but with a major difference. The difference is that interfaces define only abstract methods and final variables. It does not specify any code to implement these methods and data field contain only constants.

General form:

interface interfacename

{

Variable declaration;

Methods declaration;

}

Example:

interface area

{

final static float pi=3.14F;

float compute(folat x,float y);

void show();

}

Interfaces can be extended as follows,

interface volume extends area

{

void display();

}

Implementing interfaces:

Interfaces are used as superclasses whose propertirs are inherited by classes as follows,

class circle implements area

{

Public float compute(float x,float y)

{

return(pi*x*x);

}

}

Implementing multiple inheritance using interfaces

class stu

{

String name;

int rollno;

void getdata(String s,int r)

{

name=s;

rollno=r;

}

void putdata()

{

System.out.println("\nName="+name);

System.out.println("\nRoll No="+rollno);

}

}

class test extends stu

{

int m1,m2;

void getmarks(int x,int y)

{

m1=x;

m2=y;

}

void putmarks()

{

System.out.println("\nMark1="+m1);

System.out.println("\nMark2="+m2);

}

}

interface sports

{

final int sp=6;

abstract void putsp();

}

class result extends test implements sports

{

int tot;

public void putsp()

{

System.out.println("\nSports wt="+sp);

}

void display()

{

tot=m1+m2+sp;

putdata();

putmarks();

putsp();

System.out.println("\nTotal="+tot);

}

}

class ex2

{

public static void main(String args[])

{

result s=new result();

s.getdata("aaa",123);

s.getmarks(50,50);

s.display();

}

}

3. Write a program to illustrate the use of yield(),sleep() and stop() methods in Java.

class A extends Thread

{

public void run()

{

for(int i=1;i<=5;i++)

{

System.out.println("from Thread A:i="+i);

yield();

}

System.out.println("Exit from A");

}

}

class B extends Thread

{

public void run()

{

for(int j=1;j<=10;j++)

{

if(j==3)

stop();

System.out.println("from Thread B:j="+j);

}

System.out.println("Exit from B");

}

}

class C extends Thread

{

public void run()

{

for(int k=1;k<=15;k++)

{

if(k==5)

sleep(10000);

System.out.println("from Thread C:k="+k);

}

System.out.println("Exit from C");

}

}

class ex1

{

public static void main(String args[])

{

new A().start();

new B().start();

new C().start();

}

}

4.Define Stream. Explain the types of stream classes with its methods.

Java uses the concept of streams to represent the ordered sequence of data. Stream presents a uniform, easy-to-use, object-oriented interface between the program and the input/output devices. It is a path along which data flows. It has a source and a destination.

Java streams are classified into two basic types, namely, input stream and output stream.

· Input stream – extracts data from the source and sends it to the program

· Output stream – takes data from the program and sends it to the destination.

Stream classes

The java.io package contains a large number of stream classes that provides capabilities for processing all types of data.These classes may be categories into two groups based on the data type on which they operate.

· Byte Stream Class – It has been designed to provide functional featured for creating and manipulating streams and files for reading and writing bytes.

· Input Stream Classes

· Output Stream Classes

· Character Stream Class – can be used to read and write 16-bit Unicode characters.

· Reader Stream Classes

· Writer Stream Classes

5. Explain about Thread.

Thread is similar to a program that has a single flow of control. It has a beginning , a body, and an end and executes commands sequentially.All main programs can be called as a single-threaded programs.the states are,

· Newborn state

· Runnable state

· Running state

· Blocked state

· Dead state

Program for multithreaded concept:
class A extends Thread

{

public void run()

{

for(int i=1;i<=5;i++)

{

System.out.println("from Thread A:i="+i);

}

System.out.println("Exit from A");

}

}

class B extends Thread

{

public void run()

{

for(int j=1;j<=10;j++)

{

System.out.println("from Thread B:j="+j);

}

System.out.println("Exit from B");

}

}

class C extends Thread

{

public void run()

{

for(int k=1;k<=15;k++)

{

System.out.println("from Thread C:k="+k);

}

System.out.println("Exit from C");

}

}

class ex1

{

public static void main(String args[])

{

new A().start();

new B().start();

new C().start();

}

}

6. Explain about Exception handling in Java? (April/May 2011) (Nov/Dec 2011)

An exception is a condition that is caused by a runtime error in the program. When java interpreter encounters an error such as dividing b zero, it creates an exception object and throws it.

Syntax:

……..

Try

{

 Statements;

}

Catch(Exception-type e)

{

 Statement;

}

……..

……..

Example program to read and write characters:

class clineinput
{
 public static void main(String args[])
 {
 int invalid = 0;
 int number,count = 0;
for(int i=0;i<args.length;i++)
 {
 try
 {
 number = integer.parseint(args[i]);
 }
catch(numberformatexception e)
{
 invalid=invalid+1;
System.out.println(“invalid number: “ +args[i]);
continue;
}
count = count + 1;
}
System.out.println(‘valid numbers: = “ +count);
System.out.println(“invalid numbers: = “+invalid);
}
}
Exception object

Catch block

Catches and handles the exception

Try block

Detects and throws an exception

Files

Program Files

Data Files

Text Files

Binary Files

Prepared By: M.Rajakumaran

EGSPEC

