CS 2311 – Object Oriented Programming                  Department of EEE
      2014-2015

UNIT-1
PART A
1. What are the features of Object Oriented Programming?

• Emphasis is on data rather than procedure.

• Programs are divided into objects.

• Data structures are designed such that they characterize the objects.

• Functions that operate on the data of an object are tied together.

• Data is hidden and cannot be accessed by external functions.

• Objects may communicate with each other through functions.

• New data and functions can easily be added whenever necessary.

• Follows bottom-up approach.

2. Define Object Oriented Programming (OOP).(Nov 2013)
Object Oriented Programming is an approach that provides a way of modularizing programs by creating partitioned memory area for both data and functions that can be used as templates for creating copies of such modules on demand.

3. List out the basic concepts of Object Oriented Programming.

• Objects

• Classes

• Data Abstraction and Encapsulation

• Inheritance

• Polymorphism

• Dynamic Binding

• Message Passing

4. Define Objects.(Nov/Dec 2010) (Nov/Dec 2011)( Nov 2013))
Objects are the basic run time entities in an object oriented system. They are instance of a class. They may represent a person, a place etc that a program has to handle. They may also represent user-defined data. They contain both data and code.
5. Define Class. (Nov/Dec 2010)( Nov 2013)
Class is a collection of objects of similar data types. Class is a user-defined data type. The entire set of data and code of an object can be made a user defined type through a class.
6. Define Encapsulation and Data Hiding. .(Nov/Dec 2010)( Apr/May 2012)
The wrapping up of data and functions into a single unit is known as data encapsulation. Here the data is not accessible to the outside world. The insulation of data from direct access by the program is called data hiding or information hiding.

7. Define Data Abstraction.(April/May 2011)( Apr/May 2012)(Nov 2013)
Abstraction refers to the act of representing the essential features without including the background details or explanations.

8. List out some of the benefits of OOP.

• Eliminate redundant code

• Saves development time and leads to higher productivity

• Helps to build secure programs

• Easy to partition work

• Small programs can be easily upgraded to large programs

• Software complexity can easily be managed
 9. Define token. What are the tokens used in C++?(Nov/Dec 2011)
The smallest individual units in a program are known as tokens. The various tokens in C++ are keywords, identifiers, constants, strings and operators.

10. What is a Byte Code?(Nov 2013)

Byte code is the compiled code that compilers for Java and C++ . It is a simpler code made up of instructions that are one byte long. Microsoft's .NET framework calls it Common Intermediate Language (CIL).
11. Define a class.

A class is a way to bind the data and its function together. It allows the data to be hidden from external use. The general form of a class is,

Class class_name
{ private:variable declarations;function declaration;public:variable declarations;function declaration;};

12. List the access modes used within a class.

• Private – The class members are private by default. The members declared private are completely hidden from the outside world. They can be accessed from only within the class.

• Public – The class members declared public can be accessed from any where.

• Protected – The class members declared protected can be access from within the class and also by the friend classes.

13. How can we access the class members?

The class members can be accessed only when an object is created to that class. They are accessed with the help of the object name and a dot operator. They can be accessed using the general format,   Object_name.function_name (actual_arguments);

14. Where can we define member functions?

Member functions can be defined in two places:

• Outside the class definition – The member functions can be defined outside the class definition with the help of the scope resolution operator. The general format is given as,

return_type class_name :: function_name (argument declaration)

{function body}

• Inside the class definition – The member function is written inside the class in place of the member declaration. They are treated as inline functions.

15. What are the characteristics of member functions?

The various characteristics of member functions are,

• Different classes can use the same function name and their scope can be resolved using the membership label.

• Member functions can access the private data of a class while a nonmember function cannot.

• A member function can call another member function directly without using a dot operator.
16. How can an outside function be made inline?

An outside function can be made inline by just using the qualifier ‘inline’ in the header line of the function definition. The general format is,

inline return_type class_name :: function_name (argument declaration)
{ function body }

17. What are the properties of a static data member? (Nov/Dec 2011)

The properties of a static data member are,

• It is initialized to zero when the first object is created and no other initialization is permitted.

• Only one copy of that member is created and shared by all the objects of that class.

• It is visible only within the class, but the life time is the entire program.

18. Define Constructor.

A constructor is a special member function whose task is to initialize the objects of its class. It has the same name as the class. It gets invoked whenever an object is created to that class. It is called so since it constructs the values of data members of the class.

19. List some of the special characteristics of constructor.

• Constructors should be declared in the public section.

• They are invoked automatically when the objects are created.

• They do not have return types

• They cannot be inherited.

20. Define Destructor. (April/May 2011)

A destructor is used to destroy the objects that have been created by a constructor. It is a special member function whose name is same as the class and is preceded by a tilde ‘~’ symbol.

21.Give the various types of constructors.

There are four types of constructors. They are

• Default constructors – A constructor that accepts no parameters

• Parameterized constructors – The constructors that can take arguments

• Copy constructor – It takes a reference to an object of the same class as itself as an argument

• Dynamic constructors – Used to allocate memory while creating objects

PART-B

1. What are the Features of oop’s & how are they implemented in C++? (Nov/Dec 2010) (April/May 2011)  (Nov/Dec 2011) (Nov/Dec 2012)(Nov 2013)

• Objects

• Classes

• Data Abstraction and Encapsulation

• Inheritance

• Polymorphism

• Dynamic Binding

• Message Passing

1) Object :
Object is the basic unit of object-oriented programming. Objects are identified by its unique name. An object represents a particular instance of a class. There can be more than one instance of an object. Each instance of an object can hold its own relevant data.

2) Class :
Classes are data types based on which objects are created. Objects with similar properties and methods are grouped together to form a Class. Thus a Class represents a set of individual objects. Characteristics of an object are represented in a class as Properties. The actions that can be performed by objects become functions of the class and is referred to as Methods.

3) Data abstraction & Encapsulation :
The wrapping up of data and its functions into a single unit is called Encapsulation.When using Data Encapsulation, data is not accessed directly, it is only accessible through the functions present inside the class.Data Abstraction increases the power of programming language by creating user defined data types. Data Abstraction also represents the needed information in the program without presenting the details.Abstraction refers to the act of representing essential features without including the background details or explanation between them.

4) Inheritance :
Inheritance is the process of forming a new class from an existing class or base class.

The base class is also known as parent class or super class, the new class that is formed is called derived class.Derived class is also known as a child class or sub class. Inheritance helps in reducing the overall code size of the program, which is an important concept in object-oriented programming.

It is classifieds into different types, they are

· Single level inheritance
· Multi-level inheritance
· Hybrid inheritance
· Hierarchial inheritance
5) Polymorphism :
Polymorphism allows routines to use variables of different types at different times. An operator or function can be given different meanings or functions. Polymorphism refers to a single function or multi-functioning operator performing in different ways.

6) Dynamic binding :
It contains a concept of Inheritance and Polymorphism.

7) Message Passing :
It refers to that establishing communication between one place to another.

2. Difference between abstraction and encapsulation with examples.( Nov 2013)

Abstraction and Encapsulation are two important Object Oriented Programming (OOPS) concepts. Encapsulation and Abstraction both are interrelated terms. 

Implementation Difference Between Encapsulation and Abstraction
1.  Abstraction is implemented using interface and abstract class while Encapsulation is implemented using private and protected access modifier.

2. OOPS makes use of encapsulation to enforce the integrity of a type (i.e. to make sure data is used in an appropriate manner) by preventing programmers from accessing data in a non-intended manner. Through encapsulation, only a predetermined group of functions can access the data. The collective term for datatypes and operations (methods) bundled together with access restrictions (public/private, etc.) is a class.

3. Example of Encapsulation
Class Encapsulation

{

    private int marks;

    public int Marks 

   {

      get { return marks; }

      set { marks = value;}

    }

}

4. Example of Abstraction
abstract class Abstraction

{

    public abstract void doAbstraction();

}

public class AbstractionImpl: Abstraction

{

    public void doAbstraction()

   {

       //Implement it

   }

}

3. Explain Do while in detail (Nov 2013).

In C++, a do while loop, sometimes just called a do loop, is a control flow statement that allows code to be executed repeatedly based on a given Boolean condition.

Syntax

do {
 Code to execute while the condition is true
} while ( condition );
/*  Example Program For Do..While In C++*/
    
#include<iostream>

#include<conio.h>

using namespace std;

int main()

{

     // Variable Declaration

     int a;

     // Get Input Value

     cout<<"Enter the Number :";

     cin>>a;

     int counter = 1;

     //Do while Loop Block

     do

     {

         cout<<"Execute Do While "<<counter<<" time"<<endl;

         counter++;

     }while (counter <= a);

     // Wait For Output Screen

     getch();

     return 0;

 }

4. Explain in detail about Class, Objects, Methods and Messages.(Apr/May 2012)

1) Object :
Object is the basic unit of object-oriented programming. Objects are identified by its unique name. An object represents a particular instance of a class. There can be more than one instance of an object. Each instance of an object can hold its own relevant data.

2) Class :
Classes are data types based on which objects are created. Objects with similar properties and methods are grouped together to form a Class. Thus a Class represents a set of individual objects. Characteristics of an object are represented in a class as Properties. The actions that can be performed by objects become functions of the class and is referred to as Methods.

3) Message Passing :
It refers to that establishing communication between one place to another.

5.  Explain the various types of operators in C++  
1. :: Scope resolution operator:

       A variable declared in an inner block cannot be accessed outside the block. To resolve this problem the scope resolution operator is used. It can be used to uncover a hidden variable. This operator allows access to the global version of the variable. It takes the form, :: variable-name

 2. ::* Pointer to member declarator : To declare a pointer to the member of the class

 3. ->* Pointer to member operator : To access a member using object name and a pointer to that member

.* Pointer to member operator : To access a member using a pointer to the object and a pointer to that member

delete Memory release operator : When a data object is no longer needed it is destroyed to release the memory space for reuse.

new Memory allocation operator : The new operator can be used to create objects of any data-type. It allocates sufficient memory to hold a data object of type data-type and returns the  address of the object.

endl Line feed operator : causes a linefeed to be inserted 

8.  setw Field width operator
: provides a common field width for all the numbers and forces them to be printed right justified    

6. Explain about Type conversions?

There are three types of conversions. They are

• Conversion from basic type to class type – done using constructor

• Conversion from class type to basic type – done using a casting operator

• Conversion from one class type to another – done using constructor or casting operator

//TYPE CONVERSION FROM ONE OBJECT TO ANOTHER OBJECT

#include<iostream.h>

#include<conio.h>

class sample

{

private:

int val;

public:

sample(int a,int b,int c)

{

if((a>b)&&(a>c))

val=a;

else if(b>c)

val=b;

else

val=c;

}

int send()

{

return val;

}

};

class sample1

{

private:

int y;

public:

sample1()

{

}

sample1(sample s1)

{

y=s1.send();

}

void print()

{

cout<<"\n Greatest number is : "<<y;

}

};

void main()

{

int a,b,c;

clrscr();

cout<<"\n Enter three numbers \n";

cin>>a>>b>>c;

sample s1(a,b,c);

sample1 s2;

s2=s1;

s2.print();

getch();

}

7. Explain constructor and its types. (Nov/Dec 2011) (Nov/Dec 2012)(Nov 2013)

A constructor is a special member function whose task is to initialize the objects of its class. It has the same name as the class. It gets invoked whenever an object is created to that class. It is called so since it constructs the values of data members of the class.

There are four types of constructors. They are

• Default constructors – A constructor that accepts no parameters

• Parameterized constructors – The constructors that can take arguments

• Copy constructor – It takes a reference to an object of the same class as itself as an argument

• Dynamic constructors – Used to allocate memory while creating objects   
8. Explain about Multiple constructors (constructor overloading)? (April/May 2011) (Nov/Dec 2011)

The usage of all the constructors in a program like parameterized constructor, copy constructor and constructor with default arguments are used in the same program- overloaded constructor.

-Program to illustrate an overloaded constructor.

#include<iostream.h>

class code

{

int id;

public:


code()


{


}


code(int a)


{


id=a;


}


code(code &x)


{


id=x.id;


}


void display(void)


{


cout<<id;


}


};


int main()


{


code A(100);


code B(A);


code C=A;


cout<<"\n id of A: ";A.display();


cout<<"\n id of B: ";B.display();


cout<<"\n id of C: ";C.display();


return 0;

   }

9. Write a C++ program to define overloaded constructor to perform string initialization, string copy and string destruction. (Apr/May 2012)

class MyString

{

private:


char *str; 
// Pointer to the char array that holds the string

int strLength; 
// Variable to store the length of the string
public:


// Default constructor to initialize the string to empty string

MyString();


// Overloaded constructor

MyString(const char *);


// Copy constructor

MyString(const MyString&);


// Overloaded assignment operator

const MyString& operator = (const MyString&);


// Display the string on screen

void display ();


// Returns the length (# of characters excluding the null terminator) of the string

int getLength ();


// Destructor

~MyString();


// Overload the relational operators to allow comparison of two MyString objects

bool operator == (const MyString&) const;


bool operator != (const MyString&) const;


bool operator <= (const MyString&) const;


bool operator < (const MyString&) const;


bool operator >= (const MyString&) const;


bool operator > (const MyString&) const;


// Concatenating two MyString objects. Returns the new MyString

MyString operator + (const MyString&) const;


// Concatenates another MyString with the current MyString

const MyString& operator += (const MyString&);

};

10. Write a C++ program to implement C = A + B, C = A − B and C = A ∗ B where A , B and C are objects containing a int value(vector). .(Apr/May 2012)

#include<iostream.h>

#include<conio.h>

class FLOAT

{

    float no;

    public:

    FLOAT(){}

    void getdata()

    {

        cout<<"\n ENTER AN FLOATING NUMBER :";

        cin>>no;

     }

     void putdata()

     {

        cout<<"\n\nANSWER IS                   :"<<no;

     }

     FLOAT operator+(FLOAT);

     FLOAT operator*(FLOAT);

     FLOAT operator-(FLOAT);

     FLOAT operator/(FLOAT);

};

FLOAT FLOAT::operator+(FLOAT a)

{

    FLOAT temp;

    temp.no=no+a.no;

    return temp;

}

FLOAT FLOAT::operator*(FLOAT b)

{

    FLOAT temp;

    temp.no=no*b.no;

    return temp;

}

FLOAT FLOAT::operator-(FLOAT b)

{

    FLOAT temp;

    temp.no=no-b.no;

    return temp;

}

FLOAT FLOAT::operator/(FLOAT b)

{

    FLOAT temp;

    temp.no=no/b.no;

    return temp;

}

main()

{

  clrscr();

  FLOAT a,b,c;

  a.getdata();

  b.getdata();

  c=a+b;

  cout<<"\n\nAFTER ADDITION OF TWO OBJECTS";

  c.putdata();

  cout<<"\n\nAFTER MULTIPLICATION OF TWO OBJECTS";

  c=a*b;

  c.putdata();

  cout<<"\n\nAFTER SUBSTRACTION OF TWO OBJECTS";

  c=a-b;

  c.putdata();

  cout<<"\n\nAFTER DIVISION OF TWO OBJECTS";

  c=a/b;

  c.putdata();

  getch();

}

UNIT-2

PART A
1. What is the use of scope resolution operator? (Nov/Dec 2011
A variable declared in an inner block cannot be accessed outside the block. To resolve this problem the scope resolution operator is used. It can be used to uncover a hidden variable. This operator allows access to the global version of the variable. It takes the form, :: variable-name
2. Define function overloading. (Nov/Dec 2011)
A single function name can be used to perform different types of tasks. The same function name can be used to handle different number and different types of arguments. This is known as function overloading or function polymorphism.

3. List out the limitations of function overloading.

We should not overload unrelated functions and should reserve function overloading for functions that perform closely related operations.

4. Define friend function?

An outside function can be made a friend to a class using the qualifier ‘friend’. The function declaration should be preceded by the keyword friend. A friend function has full access rights to the private members of a class.

5. List out the special characteristics of a friend function.

• It is not in the scope of a class in which it is declared as friend.

• It cannot be called using the object of that class.

• It can be invoked without an object.

• It cannot access the member names directly and uses the dot operator.

• It can be declared as either public or private.

• It has the objects as arguments.
6. Give the syntax for inheritance.

The syntax of deriving a new class from an already existing class is given by, Class derived-class: visibility-mode base-class {body of derived class }

7. List some of the rules for operator overloading. (April/May 2011) (Nov/Dec 2011)
• Only existing operators can be overloaded.

• We cannot change the basic meaning of an operator.

• The overloaded operator must have at least one operand.

• Overloaded operators follow the syntax rules of the original operators.

Some operators can not be overloaded such as ::,size of, - >

8. What are the types of type conversions?

There are three types of conversions. They are

• Conversion from basic type to class type – done using constructor

• Conversion from class type to basic type – done using a casting operator

• Conversion from one class type to another – done using constructor or casting operator

9. What are the conditions should a casting operator satisfy?

The conditions that a casting operator should satisfy are,

• It must be a class member.
• It must not specify a return type.

• It must not have any arguments
.

10. What are the types of inheritance?

The various types of inheritance are,

• Single inheritance

• Multi-level inheritance

• Multiple inheritances
• Hierarchical inheritance

• Hybrid inheritance

11. Define single inheritance.

In single inheritance, one class is derived from an already existing base class.  

Here A is the base class and B is the derived class.

An abstract class is one that is not used to create objects. It is designed only to act as a base class to be inherited by other classes.
12. Define ‘this’ pointer.

A ‘this’ pointer refers to an object that currently invokes a member function. For e.g., the function call a. show () will set the pointer ‘this’ to the address of the object ‘a’.

13. What is a virtual function? (Nov/Dec 2010)
When a function is declared as virtual, C++ determines which function to use at run time based on the type of object pointed to by the base pointer, rather than the type of the pointer.

14. What is a pure virtual function? (April/May 2011) (Nov/Dec 2011)( Apr/May 2012)
A virtual function, equated to zero is called a pure virtual function. It is a function declared in a base class that has no definition relative to the base class.

15. How can a private member be made inheritable?

A private member can be made inheritable by declaring the data members as protected. When declared as protected the data members can be inherited by the friend classes.
16. Uses of Operator Overloading.(Nov 2013)

Overloaded operators have appropriate meaning to user-de_ned types, so they can be used for these types.

e.g. to use operator + for adding two objects of  a user-de_ned class.

An operator must be overloaded to be used on class objects.

17. What is a Friend Class? (Nov 2013)
A friend class in C++, can access the "private" and "protected" members of the class in which it is declared as a friend. On declaration of friend class all member functions of the friend class become friends of the class in which the friend class was declared. Friend status is not inherited; every friendship has to be explicitly declared. Friend classes can help in improving Encapsulation if used wisely

18. What is an abstract class?

An abstract class is one that is not used to create objects. It is designed only to act as a base class to be inherited by other classes.

19. Difference between overloading and Overriding. (Nov 2013).
· Overriding of functions occurs when one class is inherited from another class. Overloading can occur without inheritance.

· Overloaded functions must differ in function signature ie either number of parameters or type of parameters should differ. In overriding, function signatures must be same.

· Overridden functions are in different scopes; whereas overloaded functions are in same scope.

· Overriding is needed when derived class function has to do some added or different job than the base class function.

· Overloading is used to have same name functions which behave differently depending upon parameters passed to them.
20. What is a virtual base class?






Here, class D inherits both classes B and C which are derived from the same base class A. Hence D has two copies of the properties of class A. This can be avoided by declaring classes B and C as virtual base classes.

PART-B

1. Explain about inline function? (Nov/Dec 2011)

An inline function is a function that is expanded in line when it is invoked. The compiler

Replaces the function call with corresponding function code. The inline funcitions are defined

As follows:

       inline function-header

       {

         Function body;

        }

Example:

inline double cube(double a)

         {

            Return(a*a*a);

          }

Some situations where inline expansion may not work are:

·  For functions returning values, if a loop , a switch, or a goto exists.

·  For functions not returning values, if a return statement exists.

·  If functions contain static variables.

·  If inline functions are recursive.

-Example program to illustrate inline functions :

#include <iostream.h>

inline float mul(float x, float y)

    {

 
return(x*y);


}

inline double div(double p, double q)

     {

           return(p/q) ;

          }

int main( )

{

         float a=1.2 ;

         float b=2.3;

         cout<< mul(a,b)<<”\n”;

         cout<< div(a,b)<<”\n”;

          return 0;


}

2. Explain Function Overloading?

A single function name can be used to perform different types of tasks. The same function name can be used to handle different number and different types of arguments. This is known as function overloading or function polymorphism.

#include<iostream.h>

#include<conio.h>

void swap(int &x,int &y)

{

int t;

t=x;

x=y;

y=t;

}

void swap(float &p,float &q)

{

float t;

t=p;

p=q;

q=t;

}

void swap(char &c1,char &c2)

{

char t;

t=c1;

c1=c2;

c2=t;

}

void main()

{

int i,j;

float a,b;

char s1,s2;

clrscr();

cout<<"\n Enter two integers : \n";

cout<<" i = ";

cin>>i;

cout<<"\n j = ";

cin>>j;

swap(i,j);

cout<<"\n Enter two float numbers : \n";

cout<<" a = ";

cin>>a;

cout<<"\n b = ";

cin>>b;

swap(a,b);

cout<<"\n Enter two Characters : \n";

cout<<" s1 = ";

cin>>s1;

cout<<"\n s2 = ";

cin>>s2;

swap(s1,s2);

cout<<"\n After Swapping \n";

cout<<" \n Integers i = "<<i<<"\t j =  "<<j;

cout<<" \n Float Numbers a= "<<a<<"\t b =  "<<b;

cout<<" \n Characters s1 = "<<s1<<"\t s2 =  "<<s2;

getch();

}

3. Explain about Operator Overloading? (Nov/Dec 2011)

-General form of operator function is:

Return type classname :: operator (op-arglist)

{

  Function body

}

Overloaded operator functions can be invoked by expression

   x  op y  for binary operators

In the following program  overloaded function is invoked when the expression c1+c2 is encountered. This expression is the same as operator op(x,y) (ie) operator +(c1,c2)

using friend function

#include<iostream.h>

#include<conio.h>

class complex

{

private:

float real;

float img;

public:

complex()

{

real=0.0;

img=0.0;

}

complex(float a,float b)

{

real=a;

img=b;

}

friend complex operator +(complex,complex);

void display()

{

cout<<"\n"<<real<<"+-i"<<img<<"\n";

}

};

complex operator +(complex c1,complex c2)

{

complex t;

t.real=c1.real+c2.real;

t.img=c1.img+c2.img;

return(t);

}

//};

void main()

{

clrscr();

complex c1(5.5,2.5);

complex c2(1.5,5.5);

complex c3;

c3=c1+c2;

c1.display();

c2.display();

c3.display();

getch();

}

4 .Explain about Command line arguments.(Nov 2013).

In C++ it is possible to accept command line arguments. Command-line arguments are given after the name of a program in command-line operating systems like DOS or Linux, and are passed in to the program from the operating system. To use command line arguments  understand the full declaration of the main function, which previously has accepted no arguments. In fact, main can actually accept two arguments: one argument is number of command line arguments, and the other argument is a full list of all of the command line arguments

The full declaration of main looks like this:
int main ( int argc, char *argv[] )

The integer, argc is the ARGument Count (hence argc). It is the number of arguments passed into the program from the command line, including the name of the program. 
5. Write a C++ program to Sum of series for 1-2+3-4…………….. (Nov 2013).

#include<iostream.h> 
#include<conio.h> 
void main() 
{ 
int num, sum=0, i; 
clrscr(); 
cout<<"Enter any number : "; 
cin>>num; 
for(i=0; i<=num; i++) 
sum+=i; 

cout<<"Sum of all numbers up to "<<num<<" is "<<sum; 
getch(); 
}

6. Difference between Abstract class and class (Nov 2013)
An abstract class  which can’t be instantiated. We can’t create object of abstract class, it can only be inherited. Abstract class normally represents concept with general actions associated with it.

Classes are data types based on which objects are created. Objects with similar properties and methods are grouped together to form a Class. Thus a Class represents a set of individual objects. Characteristics of an object are represented in a class as Properties. The actions that can be performed by objects become functions of the class and is referred to as Methods.

7. Difference between Interface and class, Benefits of abstract classes (Nov 2013).

Classes are data types based on which objects are created. Objects with similar properties and methods are grouped together to form a Class. Thus a Class represents a set of individual objects. Characteristics of an object are represented in a class as Properties. The actions that can be performed by objects become functions of the class and is referred to as Methods.

Interface:

Can have only method signatures and static final members

	
	An interface can extend another interface but not a class

	
	An implementing class can implement multiple interfaces

	
	All methods in an interface must not have abstract access modifier


The advantage of abstract classes is we can group several related classes together as siblings. Grouping classes together is important in keeping a program organized and understandable
8. Write a C++ program to generate prime number between the two given limits. (Nov 2013).

#include<iostream>
using namespace std;

int main(){

  int num;

  bool prime;

  cout << "Please enter a positive integer" << endl;

  cin >> num;

  for(int i = 3; i <= num; i++){

    prime = true;

    for(int n = 2; n <= i - 1; n++){

      if(i % n == 0){

        prime = false;

      }

    }

    if(prime){

      cout << i << " is prime" << endl;

    }

  }

  return 0;

}

UNIT-3

PART-A

1. What is a Function template? Explain. (Nov/dec 2011) (APR/MAY 2011)
A function template specifies how an individual function can be constructed. The limitation of such functions is that they operate only on a particular data type. It can be overcome by defining that function as a function template or generic function.

template<class T,…>


ReturnType FuncName(arguments)

{



…..//body of the function template



…..


}

2. List five common examples of exceptions. (Nov/dec 2011)

Common examples of exceptions are divide by zero, access to an array outside of its bounds, running out of memory, running out of disk space, abnormal program termination.

3. What is class template? (Nov/dec 2011)

Classes can also be declared to operate on different data types. Such classes are called class templates. A class template specifies how individual classes can be constructed similar to normal class specification

template <class T1,class T2,…>


class classname

{


T1 data1;


….


//functions of template arguments T1,T2,….


void func1(T1 a,T2 &b);


…


T func2(T2 *x,T2 *y);


};

4. What are the basically 3 keywords of exception handling mechanism? (Nov/dec 2011)

The exception-handling mechanism uses three blocks



1) try block



2) throw block



3) catch block


The try-block must be followed immediately by a handler, which is a catch-block.


If an exception is thrown in the try-block

5. What is an exception?(APR/MAY 2011)( Nov 2013)
Exceptions which occur during the program execution, due to some fault in the input data. Exceptions are run time anomalies or unusual conditions that a program may encounter while executing. it includes divide by zero, access to an array out of its bound, running out of memory. 

6. What is a template? (NOV/DEC 2010)
Templates are generic programming concept. It doesn’t depend on any data type. It is generic in nature, it is of two type 1. Function template 2. Class template

1.Function template : function templates are generic functions, which work for any data type that is passed to them. The data type is not specified while writing the function. While using the function , we pass the data type and get the required functionality.

2. Class template : class template are also generic , whose data members are generic not for specific. While creating objects for that class we can pass data member of our own.

7. How is an exception handled in C++? (NOV/DEC 2010)

Exception handling mechanism has three building blocks. Try block, throw block, and catch block. 
Try block – 
indicating program area where exception can be thrown,

Throw        – 
for throwing an exception 

Catch block – 
actually taking an action for the specific exception. 

8. What happens when a raised exception is not caught by catch block? (APR/MAY 2010)
When  a raised exception not caught by catch block , if the match is not found, the catch block calls a built in function terminate(), which terminate the program execution by calling a built in function abort().

9. Explain exception handling mechanism?

The error handling mechanism of C++ is generally referred to as exception handling. Exceptions are classified into two types

             Synchronous 

             Asynchronous. 

The proposed exception handling mechanism in C++ is designed to handle only synchronous exceptions caused within a program. When a program encounters an abnormal situation for which it is not designed, the user may transfer control to some other part of the program that is designed to deal with the problem.

10. Write the need for exception handling?

Need for exception handling

1. Dividing the error handling

2. Unconditional termination and programmer preferred termination

3. Separating error reporting and error handling

4. The object destroy problem.

11. List the file-open modes. (Nov/dec 2011)

ios::in-open the file for reading.

ios::out-open the file for writing.

12. What are the three standard template library adapters? (Nov/dec 2011)

Containers ,Algorithms, Iterators

13. Define namespace? (Nov/dec 2011)/ (APR/MAY 2011)

Namespaces allow to group entities like classes, objects and functions under a name. This way the global scope can be divided in "sub-scopes", each one with its own name.The format of namespaces is:
namespace identifier
{
entities
}
Where identifier is any valid identifier and entities is the set of classes, objects and functions that are included within the namespace. For example:

	
	namespace myNamespace

{

  int a, b;

}


14. What is the member function used in manipulating string objects? (Nov/dec 2011)

The member function used in manipulating string objects are

insert()-inserts character at specified location

erase()- removes characters as specified

replace()-replace specified  characters with a given string

append()- appends a part of string to another string

15. Name the features included in C++ for formatting the output. (NOV/DEC 2010)

1. Field Width

2. Justification in Field
3. Controlling Precision
4. Leading zeros
16. What is a C++ manipulator? (APR/MAY 2010)
Manipulators are the functions to manipulate the output formats.

17.  Write the difference between manipulators and ios function?The major  difference in the way the manipulators are implemented as comp[ared to the ios member functions. The ios member functions return the previous format state which can be used latter if necessary. But the manipulator does not return the previous state.

18. Define standard template library?

Standard template Library or STL is a collection of generic software components (generic containers) and generic algorithms, glued by objects called iterators.

19.  Explain setf ()?

The function specifies format flags that control output display like left or right justification, padding after sign symbol, scientific notation display, displaying base of the number like hexadecimal, decimal, octal etc. Ex cout.setf(ios::internal,ios::adjustfield);      Cout.setf(ios::scitific,ios::floatfield);

20. Explain get () and put () function?

The classes istream and ostream define two member functions get () and put () respectively to handle a single character input and output operations. The function cin.get() had two different versions. The first version has a prototype void get(char) and the other has prototype char get(void). The fuction cout.put() used to display a character .

1. Explain virtual functions.(Run time polymorphism) (April/May 2011)( Apr/May 2012)

The two types of polymorphism are,

• Compile time polymorphism – The compiler selects the appropriate function for a particular call at the compile time itself. It can be achieved by function overloading and operator overloading.

• Run time Polymorphism - The compiler selects the appropriate function for a particular call at the run time only. It can be achieved using virtual functions

Program to implement runtime polymorphism:

include<iostream.h>

#include<conio.h>

template<class T>

T sqr(T & n)

{

return(n*n);

}

void main()

{

int a;

float b;

double c;

clrscr();

cout<<"\n\n Enter an Integer : ";

cin>>a;

cout<<"\n Square of a = "<<sqr(a)<<endl;

cout<<"\n\n Enter a Float Value : ";

cin>>b;

cout<<"\n Square of b = "<<sqr(b)<<endl;

cout<<"\n\n Enter a Double Value : ";

cin>>c;

cout<<"\n Square of c = "<<sqr(c);

getch();

}

2. Explain STL. (Nov/Dec 2011)

The collection of generic classes and functions is called the Standard Template Library (STL). STL components which are now part of the standard C++ library are defined in the namespace std. We must therefore use the using namespace directive
 


using namespace std;

· Components of STL 

· Containers 

 
 types of container are;

sequence container

· Vector - it allows insertion and deletion at back – it permits direct access- header file is  < vector >

· Deque - double ended queue – it allows insertion and deletion at both ends- permits direct access- header file is < deque>
· List - allows insertion and deletion anywhere – header file is < list >
Associative container

· Set - used for storing unique set – it allows rapid look up- bidirectional access - header file is < set >

· Multiset - Used for storing non unique set – header file is < set >
· Map - Used for storing unique key/value – header file is <map>
· Multimap

Derived container

· Stack - Last in first out – no iterator- header file is < stack >
· Queue - First in first out – no iterator- header file is < queue>
· priority queue - first element out is always with the highest priority- header file is <queue>- no iterator
· Algorithms

· Iterators

· Application of Container Classes

3. Explain the different types of streams and various formatted I/O inC++..(Apr/May 2012)(Nov 2013)

The header files used for formatted I/O in C++ are:

Header file

Brief description

iostream.h

Provide basic information required for all stream I/O operation such as cin, cout, cerr and clog correspond to standard input stream, standard output stream, and standard unbuffered and buffered error streams respectively.

iomanip.h

Contains information useful for performing formatted I/O with parameterized stream manipulation.

fstream.h

Contains information for user controlled file processing operations.

strstream.h

Contains information for performing in-memory formatting or in-core formatting. This resembles file processing, but the I/O operation is performed to and from character arrays rather than files.

stdiostrem.h

Contains information for program that mixes the C and C++ styles of I/O.

- The compilers that fully comply with the C++ standard that use the template based header files won’t need the .h extension.The iostream class hierarchy is shown below. From the base class ios, we have a derived class:

Class

Brief description

istream

Class for stream input operation.

ostream

Class for stream output operation.

 ios derived classes

- So, iostream support both stream input and output. The class hierarchy is shown below.

4. Explain File Handling in C++.(Nov/Dec 2010) (April/May 2011)( Apr/May 2012) (Nov/Dec 2012)

Files are required to save our data for future use, as Ram is not able to hold our data permanently.
 SHAPE  \* MERGEFORMAT 



The Language like C/C++ treat every  thing as a file , these languages treat  keyboard , mouse, printer, Hard disk , Floppy disk and all other hardware as a file. 

The Basic operation on text/binary files are : Reading/writing ,reading and  manipulation of data stored on these files. Both types of files needs to be open and close.

How to open File

	Using member function Open( )
	Using Constructor

	Syntax

             Filestream object;

             Object.open(“filename”,mode);

Example

            ifstream   fin;

            fin.open(“abc.txt”)

             
	Syntax

Filestream object(“filename”,mode);

Example

ifstream     fin(“abc.txt”);


NOTE: (a)  Mode are optional and given at the end .  

(a)  Filename must follow the convention of 8.3 and it’s extension can be anyone

How to close file


Objective : To insert some data on a text file

 SHAPE  \* MERGEFORMAT 



Program 

	Program
	ABC.txt  file contents

	#include<fstream>

using namespace std;

int main()

{

    ofstream fout;

    fout.open("abc.txt");

    fout<<"This is my first program in file handling";

    fout<<"\n Hello again";

    fout.close();

    return 0;

}


	This is my first program in file handling

 Hello again




Reading data from a Text File


 SHAPE  \* MERGEFORMAT 

[image: image3]


	
	

	#include<fstream>

#include<iostream>

#include<conio.h>

using namespace std;

int main()

{

    ifstream fin;

    char str[80];

    fin.open("abc.txt");

    fin>>str;     // read only first //string from file 

    cout<<"\n From File :"<<str;   // as         //spaces is treated as termination point

    getch();

    return 0;

}

NOTE : To overcome this problem use 

  fin.getline(str,79);
	[image: image4.png]&% C:\Documents and Settings\rakesh\Desktopicpp\file_handling_in_cPP\... [H[=] Y

From File :This







Detecting END OF FILE

	Using EOF( )  member function
	Using filestream object

	Syntax

           Filestream_object.eof( );

Example

#include<iostream>

#include<fstream>

#include<conio.h>

using namespace std;

int main()

{

    char ch;

    ifstream fin;

    fin.open("abc.txt");

    while(!fin.eof())   // using eof() 

                        // function 

     {

       fin.get(ch);

       cout<<ch;

     }  

   fin.close();

   getch();

   return 0;

}   


	Example

// detectting end of file

#include<iostream>

#include<fstream>

#include<conio.h>

using namespace std;

int main()

{

    char ch;

    ifstream fin;

    fin.open("abc.txt");

    while(fin) // file object 

     {

       fin.get(ch);

       cout<<ch;

     }  

   fin.close();

   getch();

   return 0;

}   




Example : To read the contents of a text file and display them on the screen.

	Program ( using getline member function)
	Program ( using get( ) member function)

	#include<fstream>

#include<conio.h>

#include<iostream>

using namespace std;

int main()

{

    char str[100];

    ifstream fin;

    fin.open("c:\\abc.txt");

    while(!fin.eof())

     {

         fin.getline(str,99);

         cout<<str;

         }

    fin.close();

    getch();

    return 0;

}      


	#include<fstream>

#include<conio.h>

#include<iostream>

using namespace std;

int main()

{

    char ch;

    ifstream fin;

    fin.open("file6.cpp");

    while(!fin.eof())

     {

         fin.get(ch);

         cout<<ch;

         }

    fin.close();

    getch();

    return 0;

}      




5. Explain Namespaces with examples.
One of C++'s less heralded additions is addition of namespaces, which can be used to structure a program into "logical units". A namespace functions in the same way that a company division might function -- inside a namespace you include all functions appropriate for fulfilling a certain goal. For instance, if you had a program that connected to the Internet, you might have a namespace to handle all connection functions: 

[image: image5.png]


[image: image6.png]


[image: image7.png]


[image: image8.png]


[image: image9.png]


namespace net_connect

{

  int make_connection();

  int test_connection();

  //so forth...

}

You can then refer to functions that are part of a namespace by prefixing the function with the namespace name followed by the scope operator -- ::. For instance, 

net_connect::make_connection()

By enabling this program structure, C++ makes it easier for you to divide up a program into groups that each perform their own separate functions, in the same way that classes or structs simplify object oriented design. But namespaces, unlike classes, do not require instantiation; you do not need an object to use a specific namespace. You only need to prefix the function you wish to call with namespace_name:: -- similar to how you would call a static member function of a class. 

Another convenience of namespaces is that they allow you to use the same function name, when it makes sense to do so, to perform multiple different actions. For instance, if you were implementing a low-level IO routine and a higher level IO routine that uses that lower level IO, you might want to have the option of having two different functions named "input" -- one that handles low-level keyboard IO and one that handles converting that IO into the proper data type and setting its value to a variable of the proper type. 

So far, when we've wanted to use a namespace, we've had to refer to the functions within the namespace by including the namespace identifier followed by the scope operator. You can, however, introduce an entire namespace into a section of code by using a using-directive with the syntax 

using  namespace namespace_name;

Doing so will allow the programmer to call functions from within the namespace without having to specify the namespace of the function while in the current scope. (Generally, until the next closing bracket, or the entire file, if you aren't inside a block of code.) This convenience can be abused by using a namespace globally, which defeats some of the purpose of using a namespace. A common example of this usage is 

using namespace std; 

which grants access to the std namespace that includes C++ I/O objects cout and cin. 

Finally, you can introduce only specific members of a namespace using a using-declaration with the syntax 

using namespace_name::thing;

One trick with namespaces is to use an unnamed namespace to avoid naming conflicts. To do so, simply declare a namespace with the normal syntax, but leave off the identifier; when this is done, you will have 

namespace

{

  //functions

}

and within the namespace you are assured that no global names will conflict because each namespace's function names take precedence over outside function names. 

Now, you might ask, how can you actually use anything in that namespace? When your program is compiled, the "anonymous" namespace you have created will be accessible within the file you created it in. In effect, it's as though an additional "using" clause was included implicitly. This effectively limits the scope of anything in the namespace to the file level (so you can't call the functions in that namespace from another other file). This is comparable to the effect of the static keyword. 

Renaming namespaces

Finally, if you just don't feel like typing the entire name of namespace, but you're trying to keep to a good style and not use the using keyword, you can rename a namespace to reduce the typing: 

namespace <new> = <old>

6) Explain about Exception handling in C++.(Nov/Dec 2010)

  Exceptions are run time anomalies. They include conditions like division by zero or access to an array outside to its bound etc.

 Types: Synchronous exception

             Asynchronous exception.

· Find the problem ( Hit the exception )

· Inform that an error has occurred. (Throw exception)

· Receive error information (Catch exception)

· Take corrective action (Handle exception) 

 
 
C++ exception handling mechanism is basically built upon three keywords, namely, try , throw and catch. The keyword try is used to preface a block of statements which may generate exceptions. This block of statements is known as try block. When an exception is detected it is thrown using a throw statement in the try block. A catch block defined by the keyword catch catches the exception thrown by the throw statement in the try block and handles it appropitely.

 SHAPE  \* MERGEFORMAT 



· try block throwing an exception

· invoking function that generates exception

· throwing mechanism

· catching mechanism

· multiple catch statements

· catch all exceptions

· Rethrowing an exception

General form

         try

            {

               …..

              throw exception;



               …….

             }

             Catch ( type arg)

          {

             ……

           }

  Exceptions that has to be caught when functions are used- The form is as follows:

    Type function (arg list)

    {

      ……

       Throw (object)

       …..

     }

     try

            {

               …..

              Invoke function here;



               …….

             }

             Catch ( type arg)

          {

             Handles exception here

           }

   Multiple catch statements:

            try

            {

               …..

              throw exception;



               …….

             }

             Catch ( type arg)

          {

             ……// catch block1

           }

               Catch ( type arg)

          {

             ……//catch block2

           }

    Catch ( type arg)

          {

             ……//catch block n

           }

  Generic exception handling is done using ellipse as follows:

     Catch ( . . .)

          {

             ……

           }

7. Explain Friend function with suitable example. (Nov/Dec 2012)( Nov 2013)

Friend Function: Friend functions are those functions which can access all the functions and  variables of a class though it is not a member function of that class. Actually to share a function among two or more classes friend functions are used. If it is declared so, then it will able to access all variables and functions of those classes.

Explanation with Example: An explanation can be given using the following program with required comments,1
 


//friend function


#include<iostream.h>


class cls2;  //this is forward declaration of class cls2


class cls1{


 int a;   //this ‘a’ is for objects of class cls1


 public:


 void set_a(){


     a=4;  //setting ‘a’ for objects of class cls1


        }


 friend void sum(cls1, cls2);


 };


class cls2{


 int a;   //this ‘a’ is for objects of class cls2


 public:


  void set_a(){


         a=4; //setting ‘a’ for objects of class cls2


         }


 friend void sum(cls1, cls2);


 };


void sum(cls1 x, cls2 y){


 cout<<x.a+y.a; /*printing the summation of the value of ‘a’ under the object ‘ob1’ of class cls1 and 


                                 the value of ‘a’ under the object ‘ob2’ of class cls2  */


 }


 void main(){


 cls1 ob1;   


 cls2 ob2;


  ob1.set_a();  //calling the set_a() function of class cls1 by ob1


 ob2.set_a();  //calling the set_a() function of class cls2 by ob2


 sum(ob1, ob2);     /*calling the friend function sum(cls1, cls2) which is common in both the classes 

                                                cls1 and cls2 and  thats why it can operate on the variables of both the classes.*/


 }

              Output: 8

            Here taking two classes cls1 and cls2 and having a friend function sum(cls1, cls2). In the main() creating two objects each for each class. Now through the objects of the classes calling their own set_a() function. Now at last calling the friend function sum(cls1, cls2). Here we are passing the two objects of the two different classes created previously to this friend function. It is operating on both of them and printing the summation. 

Use of Friend Function: Some uses of the friend given below can be found,

(i) When certain operator overloading is required friend functions can be useful.   

(ii)  Friend function makes the creation of some types of I/O functions easier. 

(iii)  Sometimes two or more classes may contain interrelated members which may need to be 

         operated at a time. In such times a friend function is required.

8. Explain in detail about String objects in C++.

 The string class is part of the C++ standard library. A string represents a sequence of characters. 

To use the string class, #include the header file: 

#include <string>

Constructors:

string () 

 - creates an empty string ("") 

string ( other_string ) 

 - creates a string identical to other_string 

string ( other_string, position, count ) 

 - creates a string that contains count characters from other_string, starting at position. If count is missing (only the first two arguments are given), all the characters from other_string, starting at position and going to the end of other_string, are included in the new string. 

string ( count, character ) 

 - create a string containing character repeated count times 

 Examples: 


string s1;                //   s1 = ""                


string s2( "abcdef" );    //   s2 = "abcdef"          


string s3( s2 );          //   s3 = "abcdef"          


string s4( s2, 1 );       //   s4 = "bcdef"           


string s5( s2, 3, 2 );    //   s5 = "de"              


string s6( 10, '-' );     //   s6 = "----------"      

 The string class also has a destructor that takes care of freeing the memory storing the characters when the object is destroyed. 

Constant Member Functions:

 These functions do not modify the string. 

const char * data () 

 - returns a C-style null-terminated string of characters representing the contents of the string 

unsigned int length () 

 - returns the length of the string 

unsigned int size () 

 - returns the length of the string (i.e., same as the length function) 

bool empty () 

 - returns true if the string is empty, false otherwise 

Operators Defined for string:

Assign = 

 string s1;

 string s2;

 ...

 s1 = s2; // the contents of s2 is copied to s1 

Append += 

 string s1( "abc" );

 string s2( "def" );

 ...

 s1 += s2; // s1 = "abcdef" now 

Indexing [] 

 string s( "def" );

 char c = s[2]; // c = 'f' now

 s[0] = s[1]; // s = "eef" now 

Concatenate + 

string s1( "abc" );

 string s2( "def" );

 string s3;

 ...

 s3 = s1 + s2; // s3 = "abcdef" now 

Equality == 

 string s1( "abc" );

 string s2( "def" );

 string s3( "abc" );

 ...

 bool flag1 = ( s1 == s2 ); // flag1 = false now

 bool flag2 = ( s1 == s3 ); // flag2 = true now 

Inequality != 

 - the inverse of equality 

Comparison <, >, <=, >= 

 - performs case-insensitive comparison 

 string s1 = "abc";

 string s2 = "ABC";

 string s3 = "abcdef";

 ...

 bool flag1 = ( s1 < s2 ); // flag1 = false now

 bool flag2 = ( s2 < s3 ); // flag2 = true now 

Member Functions:

void swap ( other_string ) 

 - swaps the contents of this string with the contents of other_string. 

 string s1( "abc" );

 string s2( "def" );

 s1.swap( s2 ); // s1 = "def", s2 = "abc" now 

string & append ( other_string ) 

 - appends other_string to this string, and returns a reference to the result string. 

string & insert ( position, other_string ) 

 - inserts other_string into this string at the given position, and returns a reference to the result string. 

string & erase ( position, count ) 

 - removes count characters from this string, starting with the character at the given position. If count is ommitted (only one argument is given), the characters up to the end of the string are removed. If both position and count are omitted (no arguments are given), the string is cleared (it becomes the empty string). A reference to the result string is returned. 

unsigned int find ( other_string, position ) 

 - finds other_string inside this string and returns its position. If position is given, the search starts there inthis string, otherwise it starts at the beginning of this string. 

string substr ( position, count ) 

 - returns the substring starting at position and of length count from this string

9. Explain Templates and its types with suitable example.

Templates are a feature of the C++ programming language that allow functions and classes to operate with generic types. This allows a function or class to work on many different data types without being rewritten for each one. This is effectively a Turing-complete language.

Templates are of great utility to programmers in C++, especially when combined with multiple inheritance and operator overloading. The C++ Standard Library provides many useful functions within a framework of connected templates.

Function templates[edit]

A function template behaves like a function except that the template can have arguments of many different types (see example). In other words, a function template represents a family of functions. The format for declaring function templates with type parameters is

template <class    identifier> function_declaration;

template <typename identifier> function_declaration;

Both expressions have exactly the same meaning and behave exactly the same way. The latter form was introduced to avoid confusion because a type parameter does not need to be a class, it may also be a basic type like int or double[citation needed].

For example, the C++ Standard Library contains the function template max(x, y) which returns either x or y, whichever is larger. max() could be defined with the following template:

//This example throws the following error : call of overloaded 'max(double, double)' is ambiguous

template <typename Type>

Type max(Type a, Type b) {

    return a > b ? a : b;

}

This single function definition works with many data types. Although usage of a function template saves space in the source code file (in addition to limiting changes to one function description) versus separate functions written for various datatypes, it does not produce smaller object code than would occur from separate non-templated versions of a function written for different types. For example, if a program uses an int and a double version of the max() function template shown above, the compiler will create an object code version of max() that takes ints and an object code version that takes doubles. The compiler output will be identical to what would have been produced if the source code contained two non-templated versions of max(), one written to handle ints and one written to handle doubles.

#include <iostream>

int main(int, char**)

  // This will call max <int> (by argument deduction)

  std::cout << max(3, 7) << std::endl;

  // This will call max<double> (by argument deduction)

  std::cout << max(3.0, 7.0) << std::endl;

  // This type is ambiguous, so explicitly instantiate max<double>

  std::cout << max<double>(3, 7.0) << std::endl;

  return 0;

}

In the first two cases, the template argument Type is automatically deduced by the compiler to be int and double, respectively. In the third case deduction fails because the type of the parameters must in general match the template arguments exactly. This function template can be instantiated with any copy-constructible type for which the expression (y < x) is valid. For user-defined types, this implies that the less-than operator must be overloaded.

Class templates

A class template provides a specification for generating classes based on parameters. Class templates are generally used to implement containers. A class template is instantiated by passing a given set of types to it as template arguments.[2] The C++ Standard Library contains many class templates, in particular the containers adapted from the Standard Template Library, such as vector.

Template specialization[edit]

When a function or class is instantiated from a template, a specialization of that template is created by the compiler for the set of arguments used, and the specialization is referred to as being a generated specialization.

Explicit template specialization[edit]

Sometimes, the programmer may decide to implement a special version of a function (or class) for a given set of template type arguments which is called an explicit specialization. In this way certain template types can have a specialized implementation that is optimized for the type or more meaningful implementation than the generic implementation.

If a class template is specialized by a subset of its parameters it is called partial template specialization (function templates cannot be partially specialized).

If all of the parameters are specialized it is a full specialization.

Explicit specialization is used when the behavior of a function or class for particular choices of the template parameters must deviate from the generic behavior: that is, from the code generated by the main template, or templates. For example, the template definition below defines a specific implementation of template "max" for type "bool":

template <>

bool max<bool>(bool a, bool b) {

    return a || b;

}

Variadic templates[edit]

C++11 introduced variadic templates, which can take a variable number of arguments in a manner somewhat similar to variadic functions such as std::printf. Both function templates and class templates can be variadic.

JAVA UNIT-4

PART-A

1. What are the various java features?

The various java features are,

• Compiled and interpreted

• Platform independent and portable

• Object oriented

• Robust and secure

• Distributed

• Familiar, small and simple

• Multithreaded and interactive

• High performance, Dynamic and extensible

2. What are the two types of Java programs?

The two types of Java programs are,

• Stand alone applications

• Web applets

3. What are the steps involved in executing a stand alone java program?

The steps involved in executing a stand alone java program are,

• Compiling source code into byte code using java compiler

• Executing the byte code program using java interpreter

4. What is the character set used in Java?

The character set used in Java is Unicode character set. It is a 16 – bit character coding system that supports more than 34,000 defined characters defined from more than 24 languages.

5. What is a token? What are the tokens used in java?

Smallest individual units in a program are known as tokens. The various tokens used in java are,

• Reserved keywords

• Identifiers

• Literals

• Operators

• Separators

6. What are the various java statements?

The various java statements used are,

• Empty statements

• Labeled statements

• Expression statements

• Selection statements

• Iteration statements

• Jump statement

• Synchronization statement

• Guarding statement

7. What are the kinds of java variables?

The three kinds of java variables are,

• Instance variables – They are created when the objects are instantiated and therefore they are associated with objects.

• Class variables – They are global to a class and belong to the entire set of the objects that class creates.

• Local variables – They are declared and used within methods.

8. Give the basic form of a class definition in java.

The basic form of a class definition is given by,

Class class-name [extends superclassname]

{

variable declaration;

methods declaration;

}
9. Define method overriding. (Nov/Dec 2011)

Method overriding is a mechanism in which the sub class method overrides the base class method. If the same function name is present in both the base class and the sub class then the sub class method overrides the base class method.

10. What are final variables, methods and classes? (Nov/Dec 2011)

In order to prevent the subclasses from overriding the members of a super class we can declare them as final using the keyword ‘final’. 

e.g, final int SIZE = 100;

final void show () {……..}

final class A {……}
11. What is the various visibility controls used in java?

The various visibility controls used in java are,

• Public access

• Private access

• Protected access

• Private protected access

•Friendly  access

12. What are the rules of thumb?

The rules of thumb are,

• Use public if the field is to be visible everywhere.

• Use protected if the field is to be visible everywhere in the current package and also subclasses in the other packages.

• Use “default” if the field is to be visible everywhere in the current package only.

• Use private protected if the field is to be visible only in sub classes, regardless of packages.

• Use private if the field is not to be visible anywhere except in its own class.

13. What are the steps involved in creating an array?

Creation of an array involves three steps,

• Declare the array – two forms,

 
type array-name [];

 
type [] array-name;

• Create memory locations

 
array-name = new type [size];

• Put values into the memory locations

 
array-name [subscript] = value;

 
type array-name [] = { list of values};

14. Give the structure of the java program.

	Documentation section

	Package Statement

	Import Statement

	Interface Statement

	Class Definition

	Main method Class

{

Main Method Definition

}


15. Java is platform independent language. Justify. 

Platform is the hardware or system software environment in which your program runs. Moreover java language run by any operating system, thats why java is called platform independent languages
16. Define Java Character Set.

 Alphabets 

 Digits 

 Special characters 

Java uses Unicode character set.
17. State the use of super keyword in java
 The super keyword is used to access a member of an immediate base class, from a derived class.
 18. Mention the various access levels supported in java 
Package, Public, Protected, Private 

19. Define API.

 Java API is libraries of compiled code that you can use in your programs. They let you add readymade and customizable functionality to save your programming time.

 20. Define Garbage Collection in Java.

Garbage Collection also referred as automatic memory management. Periodically frees the memory used by objects that are no longer needed. The garbage collector in java scans dynamic memory areas for objects and marks those that are referenced. After all possible paths to objects are investigated the unreferenced objects are freed. 

PART-B

1. Explain the features of Java? (Nov 2013)

    The various java features are,

• Compiled and interpreted

• Platform independent and portable

• Object oriented

• Robust and secure

• Distributed

• Familiar, small and simple

• Multithreaded and interactive

• High performance, Dynamic and extensible
2. Describe the structure of Java program? (Nov/Dec 2011)

 The fundamental structure of any Java programme should look like:

[package declarations]

[import statements]

[class declaration]

An example is given below:

package abc;

import java.lang;

class Demo {

public static void main(String[] args) {

Sytem.out.println("Hello! World");

}

}

/* 

This is a sample java program

Save this file as Welcome.java

*/

class Welcome

{

// A java program will start from here.

public static void main(String args[])

{

System.out.println(" Welcome to Java-Sample!!! ");

}

}

3. Explain the virtual machine concept with reference to Java. (Nov/Dec 2010)

   Java compiler produces an intermediate code known as bytecode for a machine. This machine is called the Java virtual machine and it exists only inside the computer memory. It is a simulated computer within the computer and does all major functions of a real computer.

The virtual machine code is not machine specific. The machine specific code is generated by the java interpreter by acting as an intermediary between the virtual machine and the real machine.

The java object framework ( java API) acts as the intermediary between the user programs and the virtual machine which in turn acts as the intermediary between the operating system and the java object frame work.

After we have written our program we need to compile and run the program. For that we need to use the compiler called javac which is provided by java.

Go to the command prompt and type the file name as shown here.

c;\>javac Welcome.java

The javac compiler will create a class file called Welcome.class that contains only bytecodes. These bytecodes have to be interpreted by a Java Virtual Machine(JVM) that will convert the bytecodes into machine codes. Once we successfully compiled the program, we need to run the program in order to get the output. So this can be done by the java interpreter called java. In the command line type as shown here.

c:\>java Welcome

So the output will be displayed as

Welcome to Java-Sample!!!

4. How two dimensional arrays are handled in Java? Explain it with an example. (Nov/Dec 2011)

    Two-dimensional arrays are defined as "an array of arrays". Since an array type is a first-class Java type, we can have an array of ints, an array of Strings, or an array of Objects. For example, an array of ints will have the type int[]. Similarly we can have int[][], which represents an "array of arrays of ints". Such an array is said to be a two-dimensional array. 

The command

int[][] A = new int[3][4];

declares a variable, A, of type int[][], and it initializes that variable to refer to a newly created object. That object is an array of arrays of ints. Here, the notation int[3][4] indicates that there are 3 arrays of ints in the array A, and that there are 4 ints in each of those arrays.

To process a two-dimensional array, we use nested for loops. We already know about for loop. A loop in a loop is called a Nested loop. That means we can run another loop in a loop. 

Notice in the following example how the rows are handled as separate objects. 

Code: Java

int[][] a2 = new int[10][5];

 // print array in rectangular form

 for (int i=0; i<a2.length; i++) {

     for (int j=0; j<a2[i].length; j++) {

         System.out.print(" " + a2[i][j]);

     }

     System.out.println("");

 }

In this example, "int[][] a2 = new int[10][5];" notation shows a two-dimensional array. It declares a variable a2 of type int[][],and it initializes that variable to refer to a newly created object. The notation int[10][5] indicates that there are 10 arrays of ints in the array a2, and that there are 5 ints in each of those arrays. 

Here is the complete code of the example:

public class twoDimension{

public static void main(String[] args) {

int[][] a2 = new int[10][5];

for (int i=0; i<a2.length; i++) {

for (int j=0; j<a2[i].length; j++) {

a2[i][j] = i;

System.out.print(" " + a2[i][j]);

}

System.out.println("");

}

}

}

5. What are the various data types available in Java? Explain it with an example. (Nov/Dec 2011)

     The Java programming language is statically-typed, which means that all variables must first be declared before they can be used. This involves stating the variable's type and name, as you've already seen:

int gear = 1;

Doing so tells your program that a field named "gear" exists, holds numerical data, and has an initial value of "1". A variable's data type determines the values it may contain, plus the operations that may be performed on it. In addition to int, the Java programming language supports seven other primitive data types. A primitive type is predefined by the language and is named by a reserved keyword. Primitive values do not share state with other primitive values. The eight primitive data types supported by the Java programming language are:

•
byte: The byte data type is an 8-bit signed two's complement integer. It has a minimum value of -128 and a maximum value of 127 (inclusive). The byte data type can be useful for saving memory in large arrays, where the memory savings actually matters. They can also be used in place of int where their limits help to clarify your code; the fact that a variable's range is limited can serve as a form of documentation.

•
short: The short data type is a 16-bit signed two's complement integer. It has a minimum value of -32,768 and a maximum value of 32,767 (inclusive). As with byte, the same guidelines apply: you can use a short to save memory in large arrays, in situations where the memory savings actually matters.

•
int: The int data type is a 32-bit signed two's complement integer. It has a minimum value of -2,147,483,648 and a maximum value of 2,147,483,647 (inclusive). For integral values, this data type is generally the default choice unless there is a reason (like the above) to choose something else. This data type will most likely be large enough for the numbers your program will use, but if you need a wider range of values, use long instead.

•
long: The long data type is a 64-bit signed two's complement integer. It has a minimum value of -9,223,372,036,854,775,808 and a maximum value of 9,223,372,036,854,775,807 (inclusive). Use this data type when you need a range of values wider than those provided by int.

•
float: The float data type is a single-precision 32-bit IEEE 754 floating point. Its range of values is beyond the scope of this discussion, but is specified in section 4.2.3 of the Java Language Specification. As with the recommendations for byte and short, use a float (instead of double) if you need to save memory in large arrays of floating point numbers. This data type should never be used for precise values, such as currency. For that, you will need to use the java.math.BigDecimal class instead. Numbers and Strings covers BigDecimal and other useful classes provided by the Java platform.

•
double: The double data type is a double-precision 64-bit IEEE 754 floating point. Its range of values is beyond the scope of this discussion, but is specified in section 4.2.3 of the Java Language Specification. For decimal values, this data type is generally the default choice. As mentioned above, this data type should never be used for precise values, such as currency.

•
boolean: The boolean data type has only two possible values: true and false. Use this data type for simple flags that track true/false conditions. This data type represents one bit of information, but its "size" isn't something that's precisely defined.

•
char: The char data type is a single 16-bit Unicode character. It has a minimum value of '\u0000' (or 0) and a maximum value of '\uffff' (or 65,535 inclusive).

In addition to the eight primitive data types listed above, the Java programming language also provides special support for character strings via the java.lang.String class. Enclosing your character string within double quotes will automatically create a new String object; for example, String s = "this is a string";. String objects are immutable, which means that once created, their values cannot be changed. The String class is not technically a primitive data type, but considering the special support given to it by the language, you'll probably tend to think of it as such.

6. How one dimensional array is handled in Java? Explain it with an example. (April/May 2011)

     An array is a container object that holds a fixed number of values of a single type. The length of an array is established when the array is created. After creation, its length is fixed. You've seen an example of arrays already, in the main method of the "Hello World!" application. This section discusses arrays in greater detail.

[image: image11.png]Element
First index (at index 8)

1 2 3 4 5 6 7\8 9— Indices

4— Array length is 10—




An array of ten elements

Each item in an array is called an element, and each element is accessed by its numerical index. As shown in the above illustration, numbering begins with 0. The 9th element, for example, would therefore be accessed at index 8.

The following program, ArrayDemo, creates an array of integers, puts some values in it, and prints each value to standard output.

class ArrayDemo {

    public static void main(String[] args) {

        // declares an array of integers

        int[] anArray;

        // allocates memory for 10 integers

        anArray = new int[10];

        // initialize first element

        anArray[0] = 100;

        // initialize second element

        anArray[1] = 200;

        // etc.

        anArray[2] = 300;

        anArray[3] = 400;

        anArray[4] = 500;

        anArray[5] = 600;

        anArray[6] = 700;

        anArray[7] = 800;

        anArray[8] = 900;

        anArray[9] = 1000;

        System.out.println("Element at index 0: "

                           + anArray[0]);

        System.out.println("Element at index 1: "

                           + anArray[1]);

        System.out.println("Element at index 2: "

                           + anArray[2]);

        System.out.println("Element at index 3: "

                           + anArray[3]);

        System.out.println("Element at index 4: "

                           + anArray[4]);

        System.out.println("Element at index 5: "

                           + anArray[5]);

        System.out.println("Element at index 6: "

                           + anArray[6]);

        System.out.println("Element at index 7: "

                           + anArray[7]);

        System.out.println("Element at index 8: "

                           + anArray[8]);

        System.out.println("Element at index 9: "

                           + anArray[9]);

    }

} 

The output from this program is:

Element at index 0: 100

Element at index 1: 200

Element at index 2: 300

Element at index 3: 400

Element at index 4: 500

Element at index 5: 600

Element at index 6: 700

Element at index 7: 800

Element at index 8: 900

Element at index 9: 1000

In a real-world programming situation, you'd probably use one of the supported looping constructs to iterate through each element of the array, rather than write each line individually as shown above. However, this example clearly illustrates the array syntax. You'll learn about the various looping constructs (for, while, and do-while) in the Control Flow section.

Declaring a Variable to Refer to an Array

The above program declares anArray with the following line of code:

// declares an array of integers

int[] anArray;

Like declarations for variables of other types, an array declaration has two components: the array's type and the array's name. An array's type is written as type[], where type is the data type of the contained elements; the square brackets are special symbols indicating that this variable holds an array. The size of the array is not part of its type (which is why the brackets are empty). An array's name can be anything you want, provided that it follows the rules and conventions as previously discussed in the naming section. As with variables of other types, the declaration does not actually create an array — it simply tells the compiler that this variable will hold an array of the specified type.

Similarly, you can declare arrays of other types:

byte[] anArrayOfBytes;

short[] anArrayOfShorts;

long[] anArrayOfLongs;

float[] anArrayOfFloats;

double[] anArrayOfDoubles;

boolean[] anArrayOfBooleans;

char[] anArrayOfChars;

String[] anArrayOfStrings;

You can also place the square brackets after the array's name:

// this form is discouraged

float anArrayOfFloats[];

However, convention discourages this form; the brackets identify the array type and should appear with the type designation.

Creating, Initializing, and Accessing an Array

One way to create an array is with the new operator. The next statement in the ArrayDemo program allocates an array with enough memory for ten integer elements and assigns the array to the anArray variable.

// create an array of integers

anArray = new int[10];

If this statement were missing, the compiler would print an error like the following, and compilation would fail:

ArrayDemo.java:4: Variable anArray may not have been initialized.

The next few lines assign values to each element of the array:

anArray[0] = 100; // initialize first element

anArray[1] = 200; // initialize second element

anArray[2] = 300; // etc.

Each array element is accessed by its numerical index:

System.out.println("Element 1 at index 0: " + anArray[0]);

System.out.println("Element 2 at index 1: " + anArray[1]);

System.out.println("Element 3 at index 2: " + anArray[2]);

Alternatively, you can use the shortcut syntax to create and initialize an array:

int[] anArray = { 

    100, 200, 300,

    400, 500, 600, 

    700, 800, 900, 1000

};

Here the length of the array is determined by the number of values provided between { and }
7. Explain about Strings in Java? (April/May 2011) (Nov/Dec 2012)

    String manipulation is the most common part of many Java programs. Strings represent a sequence of characters. The easiest way to represent a sequence in Java is by using a character array.

 

In Java, strings are class objects and implemented using two classes, namely, String and StringBuffer. A Java string is an instantiated object of the String class. A Java string is not a character array and is not NULL terminated. Strings may be declared and created as follows,

 


String stringname;

 


Stringname = new String(“string”);

Some most commonly used string methods are,

· s1.equals(s2)

· s1.length()

· s1.charAt(n)

· s1.compareTo(s2)

· s1.concat(s2)

· s1.substring(n,m)

· s1.indexOf(‘x’)

StringBuffer class

 

StringBuffer is a peer class of String.While String creates strings of fixed-length, StringBuffer creates strings of flexible length that can be modified in terms of both length and content. We can insert characters and substrings in the middle of a string, or append another string to the end.

Some most commonly used stringbuffer methods are,

· s1.setCharAt(n,’x’)

· s1.append(s2)

· s1.insert(n,s2)

· s1.setLength(n)

8. Difference between Abstract class and class (Nov 2013)

    Abstract classes are classes that contain one or more abstract methods. An abstract method is a method that is declared, but contains no implementation. Abstract classes may not be instantiated, and require subclasses to provide implementations for the abstract methods. Let's look at an example of an abstract class, and an abstract method.

Suppose we were modeling the behavior of animals, by creating a class hierachy that started with a base class called Animal. Animals are capable of doing different things like flying, digging and walking, but there are some common operations as well like eating and sleeping. Some common operations are performed by all animals, but in a different way as well. When an operation is performed in a different way, it is a good candidate for an abstract method (forcing subclasses to provide a custom implementation). Let's look at a very primitive Animal base class, which defines an abstract method for making a sound (such as a dog barking, a cow mooing, or a pig oinking). 

public abstract Animal

{

   public void eat(Food food)

   {

        // do something with food.... 

   }

   public void sleep(int hours)

   {

        try


{



// 1000 milliseconds * 60 seconds * 60 minutes * hours



Thread.sleep ( 1000 * 60 * 60 * hours);


}


catch (InterruptedException ie) { /* ignore */ } 

   }

   public abstract void makeNoise();

}

Note that the abstract keyword is used to denote both an abstract method, and an abstract class. Now, any animal that wants to be instantiated (like a dog or cow) must implement the makeNoise method - otherwise it is impossible to create an instance of that class. Let's look at a Dog and Cow subclass that extends the Animal class.

public Dog extends Animal

{

   public void makeNoise() { System.out.println ("Bark! Bark!"); }

}

public Cow extends Animal

{

   public void makeNoise() { System.out.println ("Moo! Moo!"); }

}

9. Difference between Interface and class, Benefits of abstract classes (Nov 2013).

	Property
	Class
	Interface

	Instantiation
	Can Be Instantiated
	Can not be instantiated

	State
	Each Object created will have its own state
	Each objected created after implementing will have the same state

	Behavior
	Every Object will have the same behavior unless overridden.
	Every Object will have a define its own behavior by implementing the contract defined.

	Inheritance
	A Class can inherit only one Class and can implement many interfaces
	An Interface cannot inherit any classes while it can implement many interfaces

	Variables
	All the variables are instance by default unless otherwise specified
	All the variables are static final by default, and a value needs to be assigned at the time of definition

	Methods
	All the methods should be having a definition unless decorated with an abstract keyword
	All the methods are abstract by default and they will not have a definition.


Benefits of abstract classes

An advantage of abstract classes is that they allow you to define a type of object that is then split up into other types. The subclasses all inherit the abstract methods and property names from their parent. Because the method bodies were not written in the parent class, they can be written differently in each of the specialized types.

10. Explain about Dynamic method Dispatch.(Nov 2013).

Dynamic method dispatch is the mechanism by which a call to an overridden method is resolved at run time, rather than compile time. Dynamic Method Dispatch is related to a principle that states that an super class reference can store the reference of subclass object. However, it can't call any of the newly added methods by the subclass but a call to an overridden methods results in calling a method of that object whose reference is stored in the super class reference.

It simply means that which method would be executed, simply depends on the object reference stored in super class object.

class A {

    void display() {

         System.out.println("this is class A");

    }

}

class B extends A {

     void display() {

         System.out.println("this is class B");

     }

}

 class C extends A {

     void display() {

         System.out.println("this is class C");

     }

}

 public class Dispatch {

     public static void main(String arg[]) {

         A a = new A();

         B b = new B();

         C c = new C();

        A ref; //reference variable

        ref = a; //ref refers to class A object

         ref.display(); //ref calls A's version of display();

         ref = b; //ref refers to class C object

         ref.display(); //ref calls B's version of display();

         ref = c; //ref refers to class C object

         ref.display(); //ref calls C's version of display();

     }

}

OUTPUT:

this is class A

this is Class B

this is class C

UNIT-5

PART-A

1. What is an interface? (April/May 2011)( Apr/May 2012)(Nov 2013)
An interface is basically a kind of class. It contains abstract methods and final variable declarations. It does not specify any code to implement these methods and data fields contain only constants. It is used to implement multiple inheritances.

2. How do you implement an interface? (Nov/Dec 2011)
An interface can be implemented as follows,

class class-name implements interface-name

{

Variable declaration;

methods declaration;

}

3. What are the steps involved in creating our own package?

The steps involved in creating our own package are,

• Declare the package at the beginning of the file.

• Define the class and declare it as public.

• Create a sub directory.

• Store the listing

4. Define thread. (April/May 2011)(Apr/May 2012)
A thread is similar to a program that has a single flow of control. It is a tiny program or module that runs in parallel with others.

5. Define Multitasking or multithreading.( Nov 2013)
Multitasking or multithreading is the ability to execute several programs simultaneously. A program that contains multiple flows of control is known as a multithreaded program.
6. What are the ways to create a thread?

A thread can be created in two ways,

• By creating a thread class – extends Thread class

• By converting a class to a thread – implements Runnable interface

7. How do you stop and block a thread?

A thread can be stopped using the stop (). It can be blocked using sleep (), suspend () and wait () methods.
8. What are the states in the life cycle of a thread?

The various states are,

• Newborn

• Runnable

• Running

• Blocked

• Dead

9. Define synchronization?

Synchronization is the process by which only one class is allowed to access a member function at a time. It is done using the qualifier ‘synchronized’. e.g., synchronized void show () {……..}

10. Define error. What are its types?

An error is a wrong that can make a program go wrong. There are two types of errors namely,

• Compile time errors

• Run time errors

11. What is an exception? What are the steps involved in exception handling? (April/May 2011) (Nov/Dec 2011)
An exception is a condition that is caused by a run time error in a program. The steps involved in exception handling are,

• Hit the exception

• Throw the exception

• Catch the exception

• Handle the exception

12. Give the syntax of exception handling code.

The syntax of exception handling code is given by,

try

{

Statements
}

Catch (Exception-type e)

{

Statements}

13. What is an applet? What are its types?

An applet is a small java program that is primarily used in internet computing. The types of applets are,

• Local applets

• Remote applets

14. Define Finalize method.
It is similar to destructor in C++ .It is used to free the resources which are initialized using the finalize method finalize (). The finalize () should explicitly define the task to be performed.
15. Uses of Operator Overloading. (Nov 2013)

Overloaded operators have appropriate meaning to user-de_ned types, so they can be used for these types.

e.g. to use operator + for adding two objects of  a user-de_ned class.

An operator must be overloaded to be used on class objects.

16. Define Method Overriding. 

When you have 2 methods with same name and same arguments list, one present in the base class and another present in the sub class. When you access the method in the base class using the object of the derived class, the method in the derived class will be called instead of the method in the base class. The derived class method has overridden the base class method. 
17. What is package? 
 Package is a collection of related classes and interfaces. It is also defined as “putting classes together”

 18. What is the package of Java?

 Java API Packages, User Defined Packages 

19. Java does not support multiple inheritances. Why?

 Classes in java cannot have more than one superclass.

 For example

 Class A extends B extends C {--- ---} is not permitted in java.

20. Define “Instance of Operator “in java?

 The instance of operator is a keyword, which is used to find out whether the object belongs to which class instance or not. Note that the instance of operator will cause a compile time error if it is used to check a class when there is no inheritance.  
PART B
1. Explain about Inheritance in Java? (April/May 2011)(Apr/May 2012)
The mechanism of deriving a new class from an already existing class is known as inheritance. Its types are,

• Single inheritance

• Multi-level inheritance

• Hierarchical inheritance

• Hybrid inheritance

2. Explain about Interfaces in Java?(Nov/Dec 2011) (Nov/Dec 2012)

Classes in Java cannot have more than one superclass. 

 


Class A extends B extends C

 


{

 



…………..

 


}
 
Is not permitted in Java. Java provides an alternate approach known as interfaces to support the concept of multiple inheritance. It can implement more than one interface, thereby enabling us to create that build upon other classes without the problems created by multiple inheritance.

Interface

 
An interface is basically a kind of class. Like classes, interfaces contain methods and variables but with a major difference. The difference is that interfaces define only abstract methods and final variables. It does not specify any code to implement these methods and data field contain only constants.

General form:

 

interface interfacename

 

{

 


Variable declaration;

 


Methods declaration;

 

}

Example:

 

interface area

 

{

 


final static float pi=3.14F;

 


float compute(folat x,float y);

 


void show();

 

}

Interfaces can be extended as follows,

 

interface volume extends area

 

{

 


void display();

 

}

Implementing interfaces:



Interfaces are used as superclasses whose propertirs are inherited by classes as follows,

 

class  circle implements area

 

{




Public float compute(float x,float y)

 



{

 




return(pi*x*x);

 



}



}

Implementing multiple inheritance using interfaces

class stu

{

String name;

int rollno;

void getdata(String s,int r)

{

name=s;

rollno=r;

}

void putdata()

{

System.out.println("\nName="+name);

System.out.println("\nRoll No="+rollno);

}

}

class test extends stu

{

int m1,m2;

void getmarks(int x,int y)

{

m1=x;

m2=y;

}

void putmarks()

{

System.out.println("\nMark1="+m1);

System.out.println("\nMark2="+m2);

}

}

interface sports

{

final int sp=6;

abstract void putsp();

}

class result extends test implements sports

{

int tot;

public void putsp()

{

System.out.println("\nSports wt="+sp);

}

void display()

{

tot=m1+m2+sp;

putdata();

putmarks();

putsp();

System.out.println("\nTotal="+tot);

}

}

class ex2

{

public static void main(String args[])

{

result s=new result();

s.getdata("aaa",123);

s.getmarks(50,50);

s.display();

}

}
3. Write a program to illustrate the multithreading concept in java.

· In a single threaded application, one thread of execution must do everything
· If an application has several tasks to perform, those tasks will be performed when the thread can get to them.
· A single task which requires a lot of processing can make the entire application appear to be "sluggish" or unresponsive. 
· In a multithreaded application, each task can be performed by a separate thread
· If one thread is executing a long process, it does not make the entire application wait for it to finish.
· If a multithreaded application is being executed on a system that has multiple processors, the OS may execute separate threads simultaneously on separate processors.
class MyThread extends Thread
{
public MyThread()
{ 
super("Using Thread Class");
System.out.println("Child thread : " + this);
start();
}
public void run()
{
try
{
for(int i = 5; i > 0 ; i--)
{
System.out.println("Child Thread " + i ); 
Thread.sleep(500);
}
}
catch(InterruptedException ie){} 
System.out.println("Exiting Child Thread...");
}
}

class TestMyThread
{
public static void main(String args[])
{
MyThread a = new MyThread();
try
{
for(int k=5; k > 0 ; k--)
{ 
System.out.println("Main Thread " + k);
Thread.sleep(1000);
}
} 
catch(InterruptedException ie1){}
System.out.println("Exiting Main Thread...");
}
}
4. Explain about Exception handling in Java? (April/May 2011) (Nov/Dec 2011)( Apr/May 2012)

An exception is a condition that is caused by a runtime error in the program. When java interpreter encounters an error such as dividing b zero, it creates an exception object and throws it. 

Syntax:

……..

Try

{

     Statements;

}

Catch( Exception-type e)

{

  Statement;

}

……..

……..

Example program to read and write characters:

class clineinput

{

  Public static void main(string args[])

  {

    Int invalid = 0;

  Int number,count = 0;

For(int i=0;i<args.length;i++)

 {

    Try

         {

            Number = integer.parseInt(args[i]);

           }

Catch(NumberFormatException e)

{

    Invalid=invalid+1;

     System.out.println(“invalid number: “ +args[i]);

Continue;

}

Count = count + 1;

}

System.out.println(‘valid numbers: = “ +count);

System.out.println(“invalid numbers: = “+invalid);

}

}

5. Explain about Applet Lifecycle? (Nov/Dec 2011)

An applet is a small java program that is primarily used in internet computing. The types of applets are,

• Local applets

• Remote applets

The various states in an applet life cycle are,

• Born or initialization state

• Running state

• Display state

• Idle state

• Dead or destroyed state

6. Explain Streams and IO. (Nov/Dec 2010) (April/May 2011) (Nov/Dec 2012)

Java uses the concept of streams to represent the ordered sequence of data. Stream presents a uniform, easy-to-use, object-oriented interface between the program and the input/output devices. It is a path along which data flows. It has a source and a destination.

 

Java streams are classified into two basic types, namely, input stream and output stream.

· Input stream – extracts data from the source and sends it to the program

· Output stream – takes data from the program and sends it to the destination.

Stream classes

 
The java.io package contains a large number of stream classes that provides capabilities for processing all types of data.These classes may be categories into two groups based on the data type on which they operate.

· Byte Stream Class – It has been designed to provide functional featured for creating and manipulating streams and files for reading and writing bytes.

· Input Stream Classes

· Output Stream Classes

· Character Stream Class – can be used to read and write 16-bit Unicode characters.

· Reader Stream Classes

· Writer Stream Classes

7. Explain the virtual machine concept with reference to Java.(Nov/Dec 2010)

Java compiler produces an intermediate code known as bytecode for a machine. This machine is called the Java virtual machine and it exists only inside the computer memory. It is a simulated computer within the computer and does all major functions of a real computer.


The virtual machine code is not machine specific. The machine specific code is generated by the java interpreter by acting as an intermediary between the virtual machine and the real machine.


The java object framework ( java API) acts as the intermediary between the user programs and the virtual machine which in turn acts as the intermediary between the operating system and the java object frame work.

8. Explain about Packages? (Nov/Dec 2012)

To import package- it is done as follows:

import packagename.classname;

Or

import packagename.*;

Naming conventions:

double y= java.lang.math.sqrt(x);

Math- class name

Sqrt- method name

Example for importing classes :

import package1.classA;

import package2.*;

class packagetest2

{

 public static void main(String args[])

{

 classA objectA=new classA();

classA objectB=new classB();

objectA.displayA();

objectB.displayB();

}

}

Hiding Classes:

When we import a package using * all public classes are imported. However, we may prefer to not import certain classes. That is, we may like to hide these classes from accessing from outside of the package. Such classes should be declared as “not public”.

Example:

package p1;

public class X


//public class, available outside

{

    // body of X

}

Class Y


// not public, hidden

{

  // body of Y

}

package p1;

public class Floatpoint1

{

public void displayA()

{

float a=20.5F,b=6.4F;

System.out.println("a="+a);

System.out.println("b="+b);

System.out.println("a+b="+(a+b));

System.out.println("a-b="+(a-b));

System.out.println("a*b="+(a*b));

System.out.println("a/b="+(a/b));

System.out.println("a%b="+(a%b));

}

}

package P2;

public class Relationaloperators

{

public void displayB()

{

float a=15.0F,b=20.75F,c=15.0F;

System.out.println("a="+a);

System.out.println("b="+b);

System.out.println("c="+c);

System.out.println("a<b is"+(a<b));

System.out.println("a>b is"+(a>b));

System.out.println("a==c is"+(a==c));

System.out.println("a<=c is"+(a<=c));

System.out.println("a>=b is"+(a>=b));

System.out.println("b!=c is"+(b!=c));

System.out.println("b==a+c is"+(b==a+c));

}

}

package P3;

public class Incrementoperator

{

public void displayC()

{

float a=10,b=20;

System.out.println("a="+a);

System.out.println("b="+b);

System.out.println("a="+a);

System.out.println("++a="+ ++a);

System.out.println("b++="+ b++);

System.out.println("a="+a);

System.out.println("b="+b);

}

}

package P4;

public class Decrementoperator

{

public void displayD()

{

float a=10,b=20;

System.out.println("a="+a);

System.out.println("b="+b);

System.out.println("--a="+ --a);

System.out.println("b--="+ b--);

System.out.println("a="+a);

System.out.println("b="+b);

}

}

import java.io.*;

import P1.*;

import P2.*;

import P3.*;

import P4.*;

class Operators

{

public static voidmain(String args[])

{

Floatpoint1 a1=new Floatpoint1();

a1.displayA();

Relationaloperators b1=new Relationaloperators();

b1.displayB();

Incrementoperator c1=new Incrementoperator();

c1.displayC();

Decrementoperator d1=new Decrementoperator();

d1.displayD();

}

}

9. Explain about Threads in Java? (Nov/Dec 2010) (Nov/Dec 2011)(Nov 2013)
Thread is similar to a program that has a single flow of control. It has a beginning , a body, and an end and executes commands sequentially.All main programs can be called as a single-threaded programs.the states are,

· Newborn state

· Runnable state

· Running state

· Blocked state

· Dead state

class sumthread implements Runnable

{

int i,sum=0;

public void run()

{

for(i=1;i<=5;i++)

{

sum+=i;

System.out.println("Sum of numbers from 1 to "+i+"="+sum);

if(i==5)

Thread.yield();

}

}

}

class factthread implements Runnable

{

int i,n,fact=i;

public void run()

{

for(i=1;i<=5;i++)

{

fact*=i;

System.out.println("factorial of"+i+fact);

}

}

}

class twothread

{

public static void main(String args[])

{

Thread ct=Thread.currentThread();

System.out.println("\n the main thread is:"+ct.getName());

sumthread st=new sumthread();

factthread ft=new factthread();

Thread sumt=new Thread(st, "sum thread");

Thread factt=new Thread(ft,"factorial thread");

sumt.start();

System.out.println("\n The thread created is :"+sumt.getName());

factt.start();

System.out.println("\n The thread created is :"+factt.getName());

}

}

10. How will you handle user defined exception in java?(Nov 2013)
User defined exceptions in java are also known as Custom exceptions. Most of the times when we are developing an application in java, we often feel a need to create and throw our own exceptions. These exceptions are known as User defined or Custom exceptions. 
class WrongInputException extends Exception {

   WrongInputException(String s) {

      super(s);

   }

}

class Input {

   void method() throws WrongInputException {

      throw new WrongInputException("Wrong input");

   }

}

class TestInput {

   public static void main(String[] args){

      try {

         new Input().method();

      }


  catch(WrongInputException wie) {

         System.out.println(wie.getMessage());

      }

   } 

}

11. Explain constructors in java.
A java constructor has the same name as the name of the class to which it belongs. Constructor’s syntax des not include a return type, since constructors never return a value Constructors may include parameters of various types. When the constructor is invoked using the new operator, the types must match those that are specified in the constructor definition.

Java provides a default constructor which takes no arguments and performs no special actions or initializations, when no explicit constructors are provided.

The only action taken by the implicit default constructor is to call the superclass constructor using the super() call.Constructor arguments provide you with a way to provide parameters for the initialization of an object.

	public class Cube1 {


int length;


int breadth;


int height;


public int getVolume() {



return (length * breadth * height);


}


Cube1() {



length = 10;



breadth = 10;



height = 10;


}


Cube1(int l, int b, int h) {



length = l;



breadth = b;



height = h;


}


public static void main(String[] args) {



Cube1 cubeObj1, cubeObj2;



cubeObj1 = new Cube1();



cubeObj2 = new Cube1(10, 20, 30);



System.out.println("Volume of Cube1 is : " + cubeObj1.getVolume());



System.out.println("Volume of Cube1 is : " + cubeObj2.getVolume());


}

}


12. Difference between Interface and class, Benefits of abstract classes (Nov 2013).

Classes are data types based on which objects are created. Objects with similar properties and methods are grouped together to form a Class. Thus a Class represents a set of individual objects. Characteristics of an object are represented in a class as Properties. The actions that can be performed by objects become functions of the class and is referred to as Methods.

Interface:

Can have only method signatures and static final members

	
	An interface can extend another interface but not a class

	
	An implementing class can implement multiple interfaces

	
	All methods in an interface must not have abstract access modifier

Benefits of abstract classes


The advantage of abstract classes is we can group several related classes together as siblings. Grouping classes together is important in keeping a program organized and understandable
13. Explain about Nested Packages (Nov 2013).

A package is a grouping of related types providing access protection and name space management. Note that types refers to classes, interfaces, enumerations, and annotation types. Enumerations and annotation types are special kinds of classes and interfaces, respectively, so types are often referred to in this lesson simply as classes and interfaces.
package mypack

class Book

{

 String bookname;

 String author;

 Book(String b, String c)

 {

  this.bookname = b;

  this.author = c;

 }

 public void show()

 {

  System.out.println(bookname+" "+ author);

 }

}

class test

{

 public static void main(String[] args)

 {

  Book bk = new Book("java","Herbert");

  bk.show();

 }

}
14. How do you add classes and interfaces in packages (Nov 2013).

Adding classes and interfaces to Java packages

We can use Unified Modeling Language (UML) class diagrams to add classes and interfaces to Java™ packages.

In the Java Perspective, open a class diagram that contains Java packages.

To add a class or interface to a Java package:

1. In the diagram editor, right-click a Java package; then click Add Java > Class or Add Java > Interface.

2. Follow the instructions in the New Java Class or New Java Interface wizard.

We can also use the package action bars or the Palette to add classes and interfaces to Java packages[image: image12.png]



A





B





C





D





Files





Program Files 





Data Files





Text Files





Binary Files





All types of files can be closed using close( ) member function


Syntax


	fileobject.close( );


Example 


	fin.close( );     // here fin is an object of istream class





Program file





SCR





Abc.txt





Program 





Keyboard





Screen





ABC.TXT





Try block





Detects and throws an exception





Catch block





Catches and handles the exception





Exception object








      EGS PILLAY ENGINEERING COLLEGE               72            Prepared By: M.Rajakumaran

